chlorine中文的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列問答集和資訊懶人包

chlorine中文的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦李暎蘭寫的 歡迎光臨!化學元素大樓:水、空氣、洗髮精、乾電池、鑽石項鍊 認識由化學組成的日常生活 可以從中找到所需的評價。

另外網站泳池水中為何出現“氯含量很高但細菌含量超標”現象?也說明:其影響因素有酸鹼度pH、結合氯(Combined Chlorine)、氰尿酸(Cyanuric Aacid)、溫度、 ... 游泳池水中的自由餘氯(Free Chlorine, FC)會與水中有機污染物(如汗水、尿 ...

朝陽科技大學 應用化學系 許世興所指導 邱德瑋的 無電電鍍銅以乙醛酸取代甲醛當作還原劑 (2021),提出chlorine中文關鍵因素是什麼,來自於無電電鍍銅、甲醛、乙醛酸。

而第二篇論文國立臺灣科技大學 材料科學與工程系 吳昌謀所指導 SHRISHA的 以金屬氧化物復合材料為基礎之氫氣感測器 (2021),提出因為有 的重點而找出了 chlorine中文的解答。

最後網站cl -化學元素氯 - 華人百科則補充:氯. 【中文別名】氯;氯氣;液氯;氯(氣);氯氣(液);高純氯氣;氯水;. 【英文名稱】Chlorine. 【英文別名】Bertholite; Chloor; chlore; Chlorine [UN1017] [Poison gas]; ...

接下來讓我們看這些論文和書籍都說些什麼吧:

除了chlorine中文,大家也想知道這些:

歡迎光臨!化學元素大樓:水、空氣、洗髮精、乾電池、鑽石項鍊 認識由化學組成的日常生活

為了解決chlorine中文的問題,作者李暎蘭 這樣論述:

氮家族每天的行程總是很忙碌?碳家族個個長得不一樣? 認識化學元素不必等到國中死背 透過擬人化的趣味故事 小學生就能理解!   每當大家提到「化學」,總是會先想起又難又複雜的化學式,然後開始打呵欠;又或者一想到埋首於實驗室裡的科學家所專精的領域,根本不是一般人可以理解的,讓人完全提不起興趣。但是,若是靜下來觀察一下周遭,你將會發現「化學」其實就藏在我們的日常生活中。   我們所處的世界,可以說全都是由「化學」所組成的,對人們有著非常大的影響。從日常使用的肥皂、洗髮精、潤絲精、乾電池,到媽媽喜愛的金戒指、鑽石項鍊,以及不可或缺的醫藥用品、化妝品,甚至連水和空氣等等,幾乎所有的生活必需品,都

和「化學」有著不可分割的緊密關係。 既然,化學是孩子與你我生活處處可見的朋友,是不是能夠找到一種更輕鬆有趣的方式,進一步認識它們?   本書的內容,便是透過一則又一則生動活潑的故事,將化學元素們擬人化,描述它們各自的性格,幫助孩子不必死背,就能理解記憶它們的功能與特質,比方重量最輕、在宇宙間含量最多的氫小姐,因為身體太輕,所以不太待在家裡,而是在天空中自由自在地飄來飄去,她們特別喜歡土星;另外還有住在6號房的碳家族,他們有個神奇的小秘密,那就是每位家人的臉會有都是不同的顏色──爸爸是白色,媽媽是黑色,哥哥是黑色,姊姊是白色。黑臉的碳成員,通常被稱作是「煤」或「碳」;白臉的碳成員,則會被稱作

「鑽石」……   從我們每天吃的食物、讀書用的書本和筆記本、洗澡的清潔劑、生病時使用的醫藥用品等……化學成就了全世界。了解化學,將能讓孩子更了解我們生活的世界,進入國中、接觸元素週期表後,也能輕輕鬆鬆將之前閱讀的故事化為實用。現在就跟著住在化學元素大廈的朋友們,一起探索神奇的化學世界吧!  

無電電鍍銅以乙醛酸取代甲醛當作還原劑

為了解決chlorine中文的問題,作者邱德瑋 這樣論述:

如今環保法規的嚴格,造成無電電鍍產業上使用的還原劑甲醛受到管制,因此需要尋找替代的還原劑來取代甲醛還原劑,必須對環境無害且不受到環保規範的環境友善藥品。無電電鍍是在不施加電壓的情況下以自身催化氧化還原反應使金屬能夠在材料表面上形成一層金屬薄膜,此表面金屬工藝經常用於市面上經常看到的各個行業裡,例如:在布上進行鍍銅、在汽車塑膠零件上鍍上金屬薄膜增加美觀和在醫療器材上鍍上銅增加抗菌性。 本研究是要將甲醛還原劑用乙醛酸進行代替,乙醛酸為環境友善藥品,並未受到環保法規限制,條件也並未有太大的不同,因此適合用以替代甲醛。比較乙醛酸跟甲醛使用之差異。在實驗中是使用到了硫酸銅、EDTA螯合劑、50

%乙醛酸還原劑、2,2聯吡啶、黃血鹽等安定劑和利用氫氧化鈉進行pH值的調整。本次是以在布上進行無電電鍍銅來進行實驗,將布進行前處理再進行鍍銅,將無電電鍍完之布進行厚度、電阻和密著性測試來表明說鍍上之銅可以達到與使用甲醛還原劑相同的效果,也可以達到所需要的條件,可使用乙醛酸來代替甲醛當作無電電鍍主要的還原劑來使用,廢液處理方式跟原本的方法相同,但不需要額外負擔甲醛的處理費用和空汙費用。

以金屬氧化物復合材料為基礎之氫氣感測器

為了解決chlorine中文的問題,作者SHRISHA 這樣論述:

氫氣(H2)因其高度易燃性而被歸屬於有害氣體,當其於大氣下達4-7重量百分濃度時,即具有相當之危險性,存在爆燃的風險,且由於其無色無味,大大提升檢測管線洩漏之難度,也因此奠定了其感測器存在之必要性及重要性。近年來,金屬氧化物由於其優異的化學和物理性質被廣泛應用於此領域,如:ZnO、WO3、TiO2、SnO2、MoS2等。以金屬鎢為基材之複合材料被廣泛應用於感測器氣敏層相關研究中,因其對多種目標有毒氣體具高度之靈敏性。而三氧化鎢(WO3)應用於氫氣感測器之先例,因此本研究之第一部分將專注於還原氧化鎢(WO2.72)於此領域之應用的研究。以三氧化鎢為原材料,應用鍛燒法合成還原氧化鎢奈米粒子(WO

2.72),並通過FE-SEM、XRD和Raman光譜進行樣品表徵確認。待合成完成,以旋塗方式完成感氣層於SiO2/Si晶圓之塗佈,並完成叉指式電極之沉積。經測試,WO2.72感測器於室溫條件下之感測能力為27%,且具備於500ppm濃度條件下長期穩定性及重複使用性。同時以電子耗盡層理論說明其機制。儘管銫鎢青銅(CsxWO3)已被廣泛應用於其他領域,但其並無作為氫氣感測器氣敏層材料之先例,因此本研究之第二部分延續對金屬鎢為基材之複合材料的研究,欲開發當前尚無相關研究之鎢青銅(MxWO3)於此領域之應用的研究,CsxWO3感測器之製程,以水熱法先行完成銫鎢青銅奈米棒的合成,並透過多項儀器鑑定其物

理性質以確保結構之型態,並以旋轉塗佈之技術將之形成薄層結構於SiO2/Si晶圓之上,完成感氣層製備,隨後完成橫向多指Pt電極,以利後續性能檢測測試。經測試於不同濃度之氫氣(10ppm至500ppm),測試結果呈現,銫鎢青銅感測器於室溫下具優異的感測性能(31.3%),並且優於WO3感測器(4.7%)。選擇性測試亦呈現優異結果,於氨氣及二氧化碳測試中僅有極低之響應。此材料具備可靠性、合成方法簡單、濕度影小及選擇性優異等優勢,大大提升其應用之可行性。且與WO3感測器相比,CsxWO3感測器具更為優異的表面吸附能力及更強的活性O2官能基電誘導能力,因而展現了增強的氣敏性。當前CsxWO3感氣層展現優

異的效能,成功證實MxWO3作為金屬氧化物氣體感應器之可行性。於第三部分研究中,成功以溶劑熱法合成新型CsxWO3/MoS2奈米複合材料,再次採用旋轉塗佈之技術,完成於SiO2/Si晶圓形成感氣薄層結構之操作,並以PVD技術沉積設計之叉指式電極完成感測器製備。經測試,CsxWO3/MoS2感測器可於室溫下展現優異的氫氣感測能力,尤其包含15wt.% MoS2 (15 % CsxWO3/MoS2)之奈米複合材料,其感測性能甚至可達51%。此外,因具有高度循環穩定性,更增添其於實際應用的優勢。於本篇之最後一項研究,預期導入先進技術,以Zirconium-based metallic glass n

anotube arrays為基材,於其上透過實驗參數設定,完成氧化鋅(ZnO)奈米棒之生長,並以此材料做為氫氣感氣層之應用。於具contact-hole陣列(孔徑為2 µm)之光阻劑形成之模板上濺鍍沉積metallic glass (Zr60Cu25Al10Ni5)以得異質Zirconium-based metallic glass nanotube arrays,並沉積ZnO種子層以提供成核位點以利於metallic glass nanotube arrays內部生長奈米棒狀結構,其後採水熱法完成ZnO奈米棒之生長,接著濺鍍Pt電極,以利後續性能檢測測試。經實驗證實,Fabricated

Zirconium-based metallic glass nanotube arrays with ZnO nanorods (Zr-ZnO-nanorods)具優異的氫氣傳感性能。