Sheet metal forming的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列問答集和資訊懶人包

Sheet metal forming的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦Echempati, Raghu寫的 Primer on Automotive Lightweighting Technologies 和Schuler GmbH (EDT)的 Metal Forming Handbook都 可以從中找到所需的評價。

另外網站Sheet-Metal Forming Processes and Equipment也說明:there are numerous processes employed for making sheet-metal parts. However; the term pressworking or press forming is used commonly in industry to describe ...

這兩本書分別來自 和所出版 。

國立臺北科技大學 材料科學與工程研究所 陳貞光所指導 廖桓雍的 6005鋁合金之T6熱處理優化 (2021),提出Sheet metal forming關鍵因素是什麼,來自於6005鋁合金、熱力學模擬、T6熱處理、固溶處理、人工時效。

而第二篇論文國立清華大學 工程與系統科學系 葉宗洸、王美雅所指導 施湘鈴的 水化學控制對於壓水式反應器一次側水環境 600合金與316L不銹鋼的應力腐蝕龜裂影響之研究 (2021),提出因為有 應力腐蝕龜裂、鎳基600合金、316L不銹鋼、慢應變速率拉伸試驗、硼/鋰濃度、溶氫量的重點而找出了 Sheet metal forming的解答。

最後網站Micro-roll Forming Simulation - Deakin University Blogs則補充:Sheet Metal Forming Group @ Deakin ...

接下來讓我們看這些論文和書籍都說些什麼吧:

除了Sheet metal forming,大家也想知道這些:

Primer on Automotive Lightweighting Technologies

為了解決Sheet metal forming的問題,作者Echempati, Raghu 這樣論述:

Dr. Raghu Echempati, PI, is a full professor of Mechanical Engineering at Kettering University. He earned his Master’s and Ph.D. in Mechanical Engineering from the Indian Institute of Technology (India) and another Master’s in Engineering Management from Kettering University. He is a registered prof

essional engineer (P.E.). He was an active member of SME and a certified manufacturing engineer also granted by SME. He is an active member and a fellow of ASME, active member and McFarland awardee of SAE, and an active member of ASEE. He participated in several study abroad programs in Germany and

taught design and finite element analysis courses for several semesters in Germany and in India. He secured Fulbright award twice to teach in India and in Thailand. Since 2005, he has been one of the organizers of Body Design and Engineering session of SAE world congress. He is a panel member to rev

iew proposals submitted to NSF, Fulbright and Gilman Foundation (for study abroad). He has published over 130 journal and conference papers and supervised several undergraduate and graduate student theses in the areas of design, finite element analysis and manufacturing. His academic teaching, appli

ed research and consulting experience spans over 25 years. He taught several core and elective courses in the mechanics, design and manufacture areas, including sheet metal forming course that he developed and taught for many years. He published a few papers with his students on formability of alumi

num sheet metal parts. Dr. Echempati worked at GM and other industries as a aculty Intern to understand the better practices followed in bulk and sheet metal forming processes, primarily using steel and to some extent aluminum formed conventionally and by hydroforming operations.

6005鋁合金之T6熱處理優化

為了解決Sheet metal forming的問題,作者廖桓雍 這樣論述:

6005鋁合金為Al-Mg-Si系列之熱處理鋁合金,可透過均質化處理 (Homogenization)、固溶處理 (Solid solution treatment, S.T.) 與人工時效 (Artificial aging, A.A.) 提升材料機械性質。本研究針對已均質化6005鋁合金,透過熱力學模擬軟體計算材料平衡相之比例變化作為熱處理參數參考,擬定固溶處理與人工時效之溫度、時間,經由時效硬化熱處理尋找最佳T6熱處理參數,使Mg-Si析出物達到β”狀態,最大化增加6005鋁合金之機械性質。6005鋁合金在525°C、550°C、575°C以同一溫度進行固溶處理,隨固溶時間的增加,硬度

皆有逐漸下降趨勢,顯示粗大Mg-Si析出物經固溶處理皆有效消除,Mg、Si原子均勻固溶擴散至Al基底內。在人工時效方面,以155°C進行人工時效約在32小時達時效硬化峰值(Peak-aged)約123 Hv,其極限抗拉強度為339.7 MPa,伸長率為15.6%。於175°C約在8小時達硬化峰值約118 Hv,其極限抗拉強度為334.6 MPa,伸長率為13.8%。低溫下人工時效Mg-Si化合物需更長時間才會成長為β”,但較為容易有效控制Mg-Si析出物之生長與相變化,故155°C最大硬度峰值略高於175°C最大硬度峰值。考量未來業界應用之6005鋁合金工件尺寸較大與時間成本考量,以550°C

固溶處理4小時,並在175°C人工時效8小時,為本研究建議之最佳T6熱處理參數。

Metal Forming Handbook

為了解決Sheet metal forming的問題,作者Schuler GmbH (EDT) 這樣論述:

Following the long tradition of the Schuler Company, the Metal For- ming Handbook presents the scientific fundamentals of metal forming technology in a way which is both compact and easily understood. Thus, this book makes the theory and practice of this field accessible to teaching and practical im

plementation. The first Schuler "Metal Forming Handbook" was published in 1930. The last edition of 1966, already revised four times, was translated into a number of languages, and met with resounding approval around the globe. Over the last 30 years, the field of forming technology has been rad- ic

ally changed by a number of innovations. New forming techniques and extended product design possibilities have been developed and introduced. This Metal Forming Handbook has been fundamentally revised to take account of these technological changes. It is both a text- book and a reference work whose

initial chapters are concerned to pro- vide a survey of the fundamental processes of forming technology and press design. The book then goes on to provide an in-depth study of the major fields of sheet metal forming, cutting, hydroforming and solid forming. A large number of relevant calculations of

fers state of the art solutions in the field of metal forming technology. In presenting tech- nical explanations, particular emphasis was placed on easily under- standable graphic visualization. All illustrations and diagrams were compiled using a standardized system of functionally oriented color c

odes with a view to aiding the reader's understanding.

水化學控制對於壓水式反應器一次側水環境 600合金與316L不銹鋼的應力腐蝕龜裂影響之研究

為了解決Sheet metal forming的問題,作者施湘鈴 這樣論述:

鎳基合金600 (Alloy 600)與沃斯田鐵不銹鋼316L (SS 316L)為壓水式反應器(Pressurized Water Reactor, PWR)常見的結構組件材料,然而在電廠長期運轉下,結構組件腐蝕劣化問題層出不窮,如一次側冷卻水應力腐蝕龜裂(Primary Water Stress Corrosion Cracking, PWSCC)。為減緩腐蝕問題,各國電廠對於PWR進行了適當的水化學調控,如添加氫氣、控制pH值、硼酸濃度與氫氧化鋰濃度等。添加氫氣用以降低水環境因輻射分解反應而提高的氧化性,並減緩組件材料劣化,然而在目前EPRI規範的溶氫濃度25-50 cc⁄kg H2O

與運轉溫度320-360℃下,仍有PWSCC發生,因此各國核電廠考慮調整溶氫濃度至5 cc/kg H2O以下,或75 cc/kg H2O以上。此外,於水迴路中添加硼酸以控制中子反應度,添加氫氧化鋰則用於平衡水環境的pH值。但隨著燃料週期的燃耗,硼濃度逐漸下降,氫氧化鋰濃度也需有所調整。藉由溶氫(dissolved hydrogen, DH)濃度與pH值的調控,可使材料避開Ni/NiO的相轉換點,進而減緩PWSCC發生。因此本研究將探討燃料週期初期(Beginning of Cycle, BOC)與末期(End of Cycle, EOC)水環境在溶氫濃度降低至5 cc/kg H2O的條件下,對

於Alloy 600與SS 316L所造成的影響。本研究透過模擬PWR一次側水環境,對於Alloy 600與SS 316L進行慢應變速率拉伸試驗(Slow Strain Rate Test, SSRT)。實驗先將Alloy 600與SS 316L試棒進行固溶退火熱處理(SA)後,再分別進行單一階段時效處理(TT)與敏化熱處理(SEN)並預長氧化膜。而後模擬燃料週期初期與末期,在320℃與溶氫濃度為5 cc/kg H2O的水環境下進行SSRT試驗,分析材料應力腐蝕龜裂(Stress Corrosion Cracking, SCC)行為,並對於試棒破斷面與表面氧化膜形貌進行觀察與分析。實驗結果顯示

,對於Alloy 600而言,TT試棒在1200 ppm B + 3.5 ppm Li溶氫條件下展現最差的機械性質,但無論是除氧或溶氫環境,Alloy 600都表現出較低的SCC敏感性。而SS 316L SEN試棒在300 ppm B + 1 ppm Li溶氫條件下的最大抗拉強度(Ultimate Tensile Strength, UTS)與降伏強度(Yield Strength, YS)表現最差,然而實驗結果顯示溶氫可有效降低SEN試棒的SCC敏感性。Alloy 600表面氧化膜主要由尖晶石氧化物(spinel oxide) NiFe2O4、Cr2O3與NiO所構成,SS 316L的表面氧

化膜則以α-Fe2O3、γ-Fe2O3、尖晶石氧化物NiFe2O4與Fe3O4為主。