氮氣黏度的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列問答集和資訊懶人包

氮氣黏度的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦(法)F.魯克羅爾寫的 粉體與多孔固體材料的吸附:原理、方法及應用 和高殿榮的 現代機械設計手冊:單行本液壓傳動與控制設計(第二版)都 可以從中找到所需的評價。

另外網站山瑞科學有限公司也說明:凱氏氮及成份分析. 溶離試驗機. 超純水機. 塞曼效應汞分析儀. 微晶片即時螢光定量PCR儀. 微生物檢測產品. 多參數水質分析儀. 微電腦觸控型可程式黏度計.

這兩本書分別來自化學工業 和化學工業所出版 。

中原大學 機械工程研究所 陳夏宗所指導 簡民原的 模內氣體反壓應用於PP/CF複合材料微細發泡射出成型纖維配向與成型品品質之研究 (2021),提出氮氣黏度關鍵因素是什麼,來自於碳纖維、氣體反壓、纖維配向、拉伸強度、穿透導電度、超臨界微細發泡射出成型。

而第二篇論文長庚大學 化工與材料工程學系 邱方遒所指導 任庭妮的 添加奈米填充劑對聚乳酸/熱塑性聚酯彈性體摻合體性質之影響 (2021),提出因為有 聚乳酸、熱塑性聚酯彈性體、奈米碳管、環氧基擴鏈劑、摻合體、奈米複合材料、物理性質的重點而找出了 氮氣黏度的解答。

最後網站氮化硼涂料黏度則補充:南北潮商城共为您精选112个氮化硼涂料黏度相关仪器、159个氮化硼涂料黏度应用知识以及57个氮化硼涂料黏度检测标准,为您了解氮化硼涂料黏度提供有价值的参考。

接下來讓我們看這些論文和書籍都說些什麼吧:

除了氮氣黏度,大家也想知道這些:

粉體與多孔固體材料的吸附:原理、方法及應用

為了解決氮氣黏度的問題,作者(法)F.魯克羅爾 這樣論述:

本書全面綜述了有關吸附理論、方法與應用的方方面面,首先對吸附的原理、熱力學和方法學進行一個總述;然後運用吸附方法討論表面積和孔徑大小;之後介紹並討論各種不同吸附劑(碳材料、氧化物、黏土、沸石、金屬有機框架MOF)的一些典型吸附等溫線和能量學。重點在於對實驗資料的確定和解釋,特別是具有技術重要性的吸附劑的表徵。 讀者對象主要為學生及表面科學初涉獵者,通過本書可以瞭解到如何利用現今先進的科學技術手段來測定表面積、孔尺寸和表面特徵,如何對材料的性能進行表徵與判斷。 第1章 緒言 1.1 吸附的重要性  / 1 1.2 吸附的歷史  / 1 1.3 定義及術語  / 5 1.4 

物理吸附和化學吸附  / 9 1.5 吸附等溫線的類型  / 9 1.5.1 氣體物理等溫線分類  / 9 1.5.2 氣體的化學吸附  / 12 1.5.3 溶液的吸附  / 12 1.6 物理吸附能和分子類比  / 12 1.7 擴散吸附  / 17 參考文獻  / 18 第2章 氣/固介面的吸附熱力學 2.1 引言  / 21 2.2 單一氣體吸附的定量表示  / 22 2.2.1 壓力不超過100kPa時的吸附  / 22 2.2.2 壓力超過100kPa及更高時的吸附  / 25 2.3 吸附的熱力學勢  / 28 2.4 Gibbs表示中與吸附態有關的熱力學量  / 32 2.4

.1 摩爾表面過剩量的定義  / 32 2.4.2 微分表面過剩量的定義  / 33 2.5 吸附過程中的熱力學量  / 34 2.5.1 微分吸附量的定義  / 34 2.5.2 積分摩爾吸附量的定義  / 36 2.5.3 微分和積分摩爾吸附量的優點及局限性  / 36 2.5.4 積分摩爾吸附量的評估  / 37 2.6 從一系列實驗物理吸附等溫線間接推導吸附量:等比容法  / 38 2.6.1 微分吸附量  / 38 2.6.2 積分摩爾吸附量  / 40 2.7 由量熱數據推導吸附量  / 41 2.7.1 非連續過程  / 41 2.7.2 連續過程  / 42 2.8 測定微分吸

附焓的其他方法  / 43 2.8.1 浸潤式量熱法  / 43 2.8.2 色譜法  / 44 2.9 高壓狀態方程:單一氣體和混合氣體  / 44 2.9.1 純氣體情況下  / 44 2.9.2 混合氣體情況下  / 46 參考文獻  / 47 第3章 氣體吸附法 3.1 引言  / 49 3.2 表面過剩量(及吸附量)的測定  / 50 3.2.1 氣體吸附測壓法(僅測量壓力)  / 50 3.2.2 重量法氣體吸附(測量品質和壓力)  / 56 3.2.3 流量控制或監測條件下的氣體吸附  / 59 3.2.4 氣體共吸附  / 62 3.2.5 校準方法和修正  / 63 3.2

.6 其他關鍵方面  / 71 3.3 氣體吸附量熱法  / 73 3.3.1 可用設備  / 73 3.3.2 量熱程式  / 77 3.4 吸附劑脫氣  / 79 3.4.1 脫氣目標  / 79 3.4.2 傳統真空脫氣  / 79 3.4.3 CRTA控制的真空脫氣  / 81 3.4.4 載氣脫氣  / 82 3.5 實驗資料的呈現  / 83 參考文獻  / 84 第4章 固/液介面的吸附:熱力學和方法學 4.1 引言  / 87 4.2 純液體中固體浸潤的能量  / 88 4.2.1 熱力學背景  / 88 4.2.2 純液體中浸潤式微量熱法實驗技術  / 96 4.2.3 純

液體浸潤式微量熱法的應用  / 101 4.3 液體溶液中的吸附  / 110 4.3.1 二元溶液吸附量的定量表達  / 111 4.3.2 溶液吸附中能量的定量表示  / 117 4.3.3 研究溶液吸附的基本實驗方法  / 119 4.3.4 溶液吸附的應用  / 126 參考文獻  / 130 第5章 氣/固介面上物理吸附等溫線的經典闡述 5.1 引言  / 135 5.2 純氣體的吸附  / 135 5.2.1 與吉布斯吸附方程相關的方程:在可用表面上或微孔中的吸附相的描述  / 135 5.2.2 Langmuir理論  / 139 5.2.3 多層吸附  / 141 5.2.4

 Dubinin-Stoeckli理論:微孔填充  / 148 5.2.5 Ⅵ 型等溫線:物理吸附層的相變  / 150 5.2.6 經驗等溫方程  / 153 5.3 混合氣體的吸附  / 155 5.3.1 擴展的Langmuir模型  / 155 5.3.2 理想吸附溶液理論  / 157 5.4 結論  / 158 參考文獻  / 158 第6章 類比多孔固體物理吸附 6.1 引言  / 162 6.2 多孔固體的微觀描述  / 163 6.2.1 結晶材料  / 163 6.2.2 非結晶材料  / 164 6.3 分子間勢能函數  / 165 6.3.1 吸附質/吸附劑相互作用的

一般表達  / 165 6.3.2 “簡單”吸附質/吸附劑體系的常用策略  / 167 6.3.3 更“複雜”的吸附質/吸附劑體系示例  / 168 6.4 表徵計算工具  / 170 6.4.1 引言  / 170 6.4.2 可接觸的比表面積  / 170 6.4.3 孔體積/PSD  / 173 6.5 類比多孔固體物理吸附  / 174 6.5.1 GCMC模擬  / 174 6.5.2 量子化學計算  / 186 6.6 模擬多孔固體中擴散  / 190 6.6.1 基本原理  / 190 6.6.2 單組分擴散  / 192 6.6.3 混合氣體擴散  / 195 6.7 結論與未

來挑戰  / 196 參考文獻  / 197 第7章 通過氣體吸附測定表面積 7.1 引言  / 201 7.2 BET方法  / 202 7.2.1 簡介  / 202 7.2.2 BET圖  / 203 7.2.3 BET單層吸附量的有效性  / 205 7.2.4 無孔和介孔吸附劑的BET面積  / 207 7.2.5 微孔固體的BET吸附面積  / 211 7.2.6 BET面積的一些應用  / 213 7.3 等溫線分析的經驗方法  / 214 7.3.1 標準吸附等溫線  / 214 7.3.2 t方法  / 215 7.3.3 as方法  / 216 7.3.4 對比圖  /

218 7.4 分形方法  / 219 7.5 結論和建議  / 222 參考文獻  / 223 第8章 介孔的測定 8.1 引言  / 228 8.2 介孔體積、孔隙率和平均孔徑  / 229 8.2.1 介孔體積  / 229 8.2.2 孔隙率  / 230 8.2.3 液壓半徑和平均孔徑  / 230 8.3 毛細凝聚和Kelvin方程  / 231 8.3.1 Kelvin方程的推導  / 231 8.3.2 開爾文方程的應用  / 233 8.4 介孔尺寸分佈的經典計算  / 235 8.4.1 基本原則  / 235 8.4.2 計算過程  / 236 8.4.3 多層吸附厚度

  / 239 8.4.4 Kelvin方程的有效性  / 240 8.5 介孔尺寸分佈的DFT計算  / 241 8.5.1 基本原則  / 241 8.5.2 77K下的氮氣吸附  / 244 8.5.3 87K下氬氣吸附  / 245 8.6 回滯環  / 246 8.7 結論和建議  / 252 參考文獻  / 252 第9章 微孔評估 9.1 引言  / 257 9.2 氣體物理吸附等溫線分析  / 259 9.2.1 經驗法  / 259 9.2.2 Dubinin-Radushkevich-Stoeckli法  / 260 9.2.3 Horvath-Kawazoe(HK)法 

/ 262 9.2.4 密度泛函理論  / 263 9.2.5 壬烷預吸附法  / 264 9.2.6 吸附物和溫度的選擇  / 266 9.3 微量熱法  / 267 9.3.1 浸沒微量熱法  / 267 9.3.2 氣體吸附微量熱法  / 269 9.4 結論和建議  / 269 參考文獻  / 270 第10章 活性炭吸附 10.1 引言  / 273 10.2 活性炭:製備、性質和應用  / 274 10.2.1 石墨  / 274 10.2.2 富勒烯和納米管  / 276 10.2.3 炭黑  / 278 10.2.4 活性炭  / 280 10.2.5 超活性炭  / 283

10.2.6 碳分子篩  / 284 10.2.7 ACFs和碳布  / 285 10.2.8 整體材料  / 286 10.2.9 碳氣凝膠和OMCs  / 287 10.3 無孔碳的氣體物理吸附  / 288 10.3.1 氮氣和二氧化碳在炭黑上的吸附  / 288 10.3.2 稀有氣體吸附  / 292 10.3.3 有機蒸氣吸附  / 295 10.4 多孔碳氣體物理吸附  / 297 10.4.1 氬氣、氮氣和二氧化碳吸附  / 297 10.4.2 有機蒸氣吸附  / 306 10.4.3 水蒸氣吸附  / 311 10.4.4 氦氣吸附  / 316 10.5 碳-液介面處的

吸附  / 318 10.5.1 浸潤式量熱儀  / 318 10.5.2 溶液中的吸附  / 320 10.6 LPH和吸附劑變形  / 322 10.6.1 背景介紹  / 322 10.6.2 啟動入口  / 322 10.6.3 低壓滯後  / 323 10.6.4 擴張和收縮  / 324 10.7 活性炭表徵:結論和建議  / 324 參考文獻  / 325 第11章 金屬氧化物吸附 11.1 引言  / 335 11.2 二氧化矽  / 335 11.2.1 熱解二氧化矽和結晶二氧化矽  / 335 11.2.2 沉澱二氧化矽  / 342 11.2.3 矽膠  / 344 1

1.3 氧化鋁:結構、材質和物理吸附  / 352 11.3.1 活性氧化鋁的介紹  / 352 11.3.2 原材料  / 353 11.3.3 水合氧化鋁的熱分解  / 356 11.3.4 活性氧化鋁的合成  / 361 11.4 二氧化鈦粉末和凝膠  / 364 11.4.1 二氧化鈦顏料  / 364 11.4.2 金紅石:表面化學和氣體吸附  / 365 11.4.3 二氧化鈦凝膠的孔隙率  / 370 11.5 氧化鎂  / 372 11.5.1 非極性氣體在無孔MgO上的物理吸附  / 372 11.5.2 多孔形式MgO的物理吸附  / 374 11.6 其他氧化物  / 3

77 11.6.1 氧化鉻凝膠  / 377 11.6.2 氧化鐵:FeOOH的熱分解  / 379 11.6.3 微晶氧化鋅  / 381 11.6.4 水合氧化鋯凝膠  / 382 11.6.5 氧化鈹  / 385 11.6.6 二氧化鈾  / 386 11.7 金屬氧化物吸附性質的應用  / 388 11.7.1 作為氣體吸附劑、乾燥劑的應用  / 388 11.7.2 作為氣體感測器的應用  / 389 11.7.3 作為催化劑和催化劑載體的應用  / 389 11.7.4 顏料和填料應用  / 390 11.7.5 在電子產品中的應用  / 390 參考文獻  / 390 第12

章 黏土、柱撐黏土、沸石和磷酸鋁的吸附 12.1 引言  / 397 12.2 結構、形貌和層狀矽酸鹽吸附劑的性質  / 398 12.2.1 結構和層狀矽酸鹽的形貌  / 398 12.2.2 層狀矽酸鹽的氣體物理吸附  / 402 12.3 柱撐黏土(PILC):結構和屬性  / 411 12.3.1 柱撐黏土的形成和屬性  / 411 12.3.2 柱撐黏土對氣體的物理吸附  / 412 12.4 沸石:合成、孔隙結構和分子篩性質  / 415 12.4.1 沸石的結構、合成和形貌  / 415 12.4.2 分子篩沸石吸附劑性質  / 419 12.5 磷酸鹽分子篩:背景和吸附劑的性質

  / 430 12.5.1 磷酸鹽分子篩的背景  / 430 12.5.2 鋁磷酸鹽分子篩吸附劑的性質  / 432 12.6 黏土、沸石和磷酸鹽基底的分子篩的應用  / 438 12.6.1 黏土的應用  / 438 12.6.2 沸石的應用  / 439 12.6.3 磷酸鹽分子篩的應用  / 441 參考文獻  / 441 第13章 有序介孔材料的吸附 13.1 引言  / 448 13.2 有序介孔二氧化矽  / 449 13.2.1 M41S系列  / 449 13.2.2 SBA系列  / 459 13.2.3 大孔的有序介孔二氧化矽  / 463 13.3 表面功能化對吸附性

質的影響  / 466 13.3.1 金屬氧化物結合到壁中  / 466 13.3.2 金屬納米粒子封裝到孔中  / 469 13.3.3 表面嫁接有機配體  / 470 13.4 有序的有機矽材料  / 472 13.5 複製材料  / 473 13.6 結束語  / 475 參考文獻  / 475 第14章 金屬有機框架材料(MOFs)的吸附 14.1 引言  / 480 14.2 MOFs的BET比表面積評估及意義  / 482 14.2.1 BET比表面積的評估  / 482 14.2.2 BET比表面積的意義  / 485 14.3 改變有機配體性質的影響  / 486 14.3.

1 改變配體長度  / 486 14.3.2 將配體功能化  / 490 14.4 改變金屬中心的影響  / 491 14.5 改變其他表面位點性質的影響  / 497 14.6 非框架物質的影響  / 501 14.7 柔性MOF材料的特殊例子  / 503 14.7.1 MIL-53(Al,Cr)  / 505 14.7.2 MIL-53(Fe)  / 508 14.7.3 Co(BDP)  / 510 14.8 MOF材料的應用  / 512 14.8.1 氣體存儲  / 513 14.8.2 氣體分離與純化  / 513 14.8.3 催化  / 514 14.8.4 藥物緩釋  /

514 14.8.5 感測器  / 515 14.8.6 與其他吸附劑的比較  / 515 參考文獻  / 515 索引  / 521 譯者前言 吸附現象很早就為人們所認識,比如古時候活性炭就被用來脫色和除味。而對吸附原理及應用的研究則是在最近的幾十年間才迅速發展起來,並對我們的生產生活產生了重要影響,比如許多具有優良性能的吸附劑和催化劑的開發。這本由法國蒙比利埃大學G. Maurin教授等五位作者合著的《粉末與多孔固體材料的吸附》,正是將最重要的粉末以及固態多孔物質的吸附原理、方法和應用進行了總結性回顧,能夠為在相關領域從事學習和研究的人員帶來全面、系統的基礎知識方面

的幫助。 全書共分為14章,其中第1~6章主要介紹氣-固、液-固介面上吸附的熱力學和方法學,以及吸附相關的基礎理論和模擬研究,第7~9章主要介紹如何通過氣體吸附法測定表面積以及如何對介孔和微孔進行評估,第10~14章則分別具體介紹了每一類典型的吸附材料,包括活性炭、金屬氧化物、黏土、沸石、有序介孔材料、金屬有機框架材料等。這種章節佈局既能讓初學者由簡至深全面瞭解吸附的基本概念和理論,又能讓研究者直奔主題查閱感興趣的相關內容。 本書的翻譯工作主要由陳建博士、周力博士和王奮英博士承擔,還有幾位研究生在初稿的翻譯過程中也做了相應的工作。其中,在翻譯初稿中,第1章由南昌大學周力博士承擔,第2、9、

14章由南昌大學的研究生袁雅芬承擔,第3、4、10~13章由浙江師範大學的陳建博士承擔,第5~8章由南昌大學王奮英博士承擔;在二次審校定稿中,第1~9、13、14章由周力博士完成,第10~12章由王奮英博士完成。非常感謝各位譯者在時間和精力上的付出,尤其是趙耀鵬博士在百忙之中為解答各種疑問所付出的辛勞。也特別感謝化學工業出版社的支持以及為稿件後期的處理所付出的辛勤工作。 受譯者理論知識水準所限,書中難免會存在疏漏之處,歡迎讀者朋友們提出,以幫助我們糾正。最後,希望這本譯著能夠為各個層次閱讀者的學習和工作帶來有益的作用。

氮氣黏度進入發燒排行的影片

#LIVE #哈利波特 #豬隊友
ID帳號 叫超度鳥 你有種來私密嗆我 不讓我回覆你 你到底那錯了 那我就用影片來證明你這豬隊友不懂走線 以及只會超度隊友方式呈給大家看
1自己有放卡珊卓在上路卻不會利用卡珊卓 對面血沒比你多你也不敢打 一直把傷害帶到中跟下路 !!!
2.你開始一直來下路亂 對面直接充氣加上煙火 本來沒事 你來搞事!!!
3.開始叫你不要黏我 死巴著我 狂把傷害帶到下路 影片都有證明 你自己連三本書都搞不定就把傷害帶給我!!!! 叫你走開講也講不聽!!!還敢來嗆!!!
4.你走線只會把傷害帶給我 你走線難道連前後都不會走嗎?! 眼中心中只有走下路坑隊友嗎?!!
5.我建議你把你名字改成超度隊友 這名字會非常適合你

模內氣體反壓應用於PP/CF複合材料微細發泡射出成型纖維配向與成型品品質之研究

為了解決氮氣黏度的問題,作者簡民原 這樣論述:

射出成型品若於高分子基材中混練其他導電添加物則有助於成型品某些特殊性質之提升。但由於一般射出成型過程中熔膠波前流動有噴泉流效應以及熔膠在薄壁膜腔間隙的非等速流動,使得纖維等導電添加物形成某特定些排向或不均勻性分布,致使其性質提升效果有限。因此若能於成型中運用特殊成型技術或搭配控制機制來控制導電添加物的配向與分布,將可增進產品包括導電性等性能之提升。本研究運用氣體反壓控制技術,應用於含導電高分子複合材料的射出成型中,利用混練20wt%與30wt%不同比例之PP/CF碳纖維進行超臨界微細發泡射出成型,對纖維排向、穿透導電度以及拉伸強度進行研究與觀察。並對不同反壓壓力、持壓時間及模具溫度等製程參數

之影響性做有系統之探討。研究中也期望在成型過程中除利用微細發泡達成輕量化以及氣體反壓提升成品表面品質的同時,也可藉由微細發泡的產生與氣體反壓來控制纖維排向,藉以提升成型品之導電性能。 研究結果顯示模內氣體反壓導入超臨界微細發泡射出成型,搭配適當反壓壓力、持壓時間以及模具溫度,使高分子流動行為由噴泉流轉換成柱塞流,讓氣泡成長之膨脹現象用以推擠纖維,讓纖維配向張量升高以抑制氣泡大小提升產品厚度方向的穿透導電度,而碳纖維含量的增加也有助於在傳統射出與超臨界微細發泡射出之穿透導電度改善,並在氣體反壓製程相互影響作用下更讓穿透導電度有大幅度之提升。模內氣體反壓壓力與持壓時間的增加,會降低超臨界微細

發泡射出之減重比影響試片延展性,但對於成型品之拉伸強度有正面提升,並有效改善成型品表皮層厚度達到最更佳表面品質。

現代機械設計手冊:單行本液壓傳動與控制設計(第二版)

為了解決氮氣黏度的問題,作者高殿榮 這樣論述:

一部順應“中國製造2025”智慧裝備新要求、技術先進、資料可靠的現代化機械設計工具書,從新時代機械設計人員的實際需求出發,追求現代感,兼顧實用性、通用性,準確性,涵蓋了各種常規和通用的機械設計技術資料,貫徹了新的國家及行業標準,推薦了國內外先進、智慧、節能、通用的產品。 第20篇 液壓傳動與控制設計 第1章 常用基礎標準、圖形符號和常用術語 1.1基礎標準20-3 1.1.1液壓氣壓系統及元件的公稱壓力系列20-3 1.1.2液壓泵及液壓馬達的公稱排量系列20-3 1.1.3液壓元件的油口螺紋連接尺寸20-4 1.1.4液壓系統硬管外徑系列和軟管內徑系列20-4 1.1.

5液壓缸、氣缸內徑及活塞杆外徑系列20-4 1.1.6液壓缸、氣缸活塞行程系列20-4 1.1.7液壓元件清潔度指標20-5 1.1.8液壓閥油口、底板、控制裝置和電磁鐵的標識20-7 1.1.9液壓泵站油箱公稱容量系列20-7 1.2液壓圖形符號20-7 1.2.1圖形符號20-7 1.2.2液壓圖形符號繪製規則20-16 1.3常用液壓術語20-19 1.3.1基本術語20-19 1.3.2液壓泵的術語20-20 1.3.3液壓執行元件的術語20-20 1.3.4液壓閥的術語20-21 1.3.5液壓輔件及其他專業術語20-23 第2章 液壓流體力學常用計算公式及資料 2.1流體力學基本

公式20-25 2.2流體靜力學公式20-25 2.3流體動力學公式20-26 2.4阻力計算20-27 2.4.1沿程阻力損失計算20-27 2.4.2局部阻力損失計算20-28 2.5孔口及管嘴出流、縫隙流動、液壓衝擊20-30 2.5.1孔口及管嘴出流計算20-30 2.5.2縫隙流動計算20-31 2.6液壓衝擊計算20-32 第3章 液壓系統設計 3.1設計計算的內容和步驟20-33 3.2明確技術要求20-33 3.3確定液壓系統主要參數20-33 3.3.1初選系統壓力20-33 3.3.2計算液壓缸尺寸或液壓馬達排量20-34 3.3.3作出液壓缸或液壓馬達工況圖20-35

3.4擬訂液壓系統原理圖20-35 3.5液壓元件的選擇20-35 3.5.1液壓執行元件的選擇20-35 3.5.2液壓泵的選擇20-36 3.5.3液壓控制閥的選擇20-37 3.5.4蓄能器的選擇20-37 3.5.5管路的選擇20-37 3.5.6確定油箱容量20-38 3.5.7篩檢程式的選擇20-38 3.5.8液壓油的選擇20-38 3.6液壓系統性能驗算20-38 3.6.1系統壓力損失計算20-39 3.6.2系統效率計算20-39 3.6.3系統發熱計算20-39 3.6.4熱交換器的選擇20-40 3.7液壓裝置結構設計20-41 3.8液壓泵站設計20-45 3.8.1

液壓泵站的組成及分類20-45 3.8.2油箱及其設計20-46 3.8.3液壓泵組的結構設計20-47 3.8.4蓄能器裝置的設計20-50 3.9液壓集成塊設計20-51 3.10全面審核及編寫技術檔20-55 3.11液壓系統設計計算實例20-56 3.11.1機床液壓系統設計實例20-56 3.11.2油壓機液壓系統設計實例20-58 3.11.3注塑機液壓系統設計實例20-59 第4章 液壓基本回路 4.1概述20-61 4.2液壓源回路20-61 4.3壓力控制回路20-63 4.3.1調壓回路20-64 4.3.2減壓回路20-65 4.3.3增壓回路20-66 4.3.4保壓

回路20-67 4.3.5卸荷回路20-70 4.3.6平衡回路20-73 4.3.7緩衝回路20-74 4.3.8卸壓回路20-78 4.3.9制動回路20-81 4.4速度控制回路20-82 4.4.1調速回路20-82 4.4.2增速回路20-86 4.4.3減速回路20-88 4.4.4二次進給回路、比例閥連續調速回路20-89 4.5同步控制回路20-90 4.6方向控制回路20-94 4.6.1換向回路20-94 4.6.2鎖緊回路20-96 4.6.3連續往復運動回路20-97 4.7液壓馬達回路20-99 4.8其他液壓回路20-101 4.8.1順序動作回路20-101 4.

8.2插裝閥控制回路20-104 4.9二次調節靜液傳動回路20-105 第5章 液壓工作介質 5.1液壓介質的分類20-106 5.1.1分組20-106 5.1.2命名20-106 5.1.3代號20-106 5.1.4H組(液壓系統)常用工作介質的牌號及主要應用20-106 5.1.5常用工作介質與材料的適應性20-108 5.2工作介質的選擇20-109 5.2.1根據工作環境選擇20-109 5.2.2根據液壓系統工作溫度選擇20-109 5.2.2.1液壓系統的工作溫度20-109 5.2.2.2工作介質的工作溫度範圍20-109 5.2.3根據工作壓力選擇20-110 5.2.

4根據液壓泵類型選擇20-110 5.2.5工作介質黏度的選擇20-110 5.2.6工作介質污染度等級的確定20-110 5.2.7其他要求20-111 5.3工作介質的使用20-111 5.3.1污染控制20-111 5.3.2過濾20-112 5.3.3補充工作介質20-112 5.3.4更換工作介質20-112 5.3.5工作介質的維護20-112 5.3.6工作介質的檢測20-112 5.3.6.1工作介質理化性能檢測20-112 5.3.6.2工作介質污染度檢測20-113 5.3.7安全與環保20-113 5.4工作介質的貯存20-113 5.5工作介質廢棄處理20-113 第

6章 液壓泵 6.1液壓泵的分類20-114 6.2液壓泵的主要技術參數及計算公式20-114 6.2.1液壓泵的主要技術參數20-114 6.2.2液壓泵的常用計算公式20-115 6.3液壓泵的技術性能和參數選擇20-115 6.4齒輪泵20-116 6.4.1齒輪泵的工作原理及主要結構特點20-116 6.4.2齒輪泵拆裝方法、使用注意事項20-117 6.4.3齒輪泵產品20-118 6.4.3.1齒輪泵產品技術參數總覽20-118 6.4.3.2CB型齒輪泵20-118 6.4.3.3CB-B型齒輪泵20-120 6.4.3.4CBF-E型齒輪泵20-122 6.4.3.5CBF-F

型齒輪泵20-124 6.4.3.6CBG型齒輪泵20-125 6.4.3.7P系列齒輪泵20-129 6.4.3.8NB型內嚙合齒輪泵20-131 6.4.3.9三聯齒輪泵20-135 6.4.3.10恒流齒輪泵20-137 6.4.3.11複合齒輪泵20-137 6.4.3.12GPY系列齒輪泵20-139 6.5葉片泵產品20-139 6.5.1葉片泵的工作原理及主要結構特點20-139 6.5.2葉片泵產品20-141 6.5.2.1葉片泵產品技術參數概覽20-141 6.5.2.2YB型、YB1型葉片泵20-141 6.5.2.3YB-※車輛用葉片泵20-144 6.5.2.4PV2

R型葉片泵20-144 6.5.2.5PFE型柱銷式葉片泵20-149 6.5.2.6YBX型限壓式變數葉片泵20-154 6.5.2.7V4型變數葉片泵20-158 6.6柱塞泵產品20-160 6.6.1柱塞泵的工作原理及主要結構特點20-160 6.6.2柱塞泵的拆裝方法和注意事項20-162 6.6.3柱塞泵產品20-162 6.6.3.1柱塞泵產品技術參數概覽20-162 6.6.3.2CY14-1B型斜盤式軸向柱塞泵20-163 6.6.3.3A2F型柱塞泵20-166 6.6.3.4ZB型斜軸式軸向柱塞泵20-171 6.6.3.5JB型徑向柱塞泵20-172 6.6.3.6A1

0V型軸向柱塞泵20-174 6.6.3.7RK型超高壓徑向柱塞泵20-178 6.6.3.8SB型手動泵20-179 第7章 液壓馬達 7.1液壓馬達的分類20-180 7.2液壓馬達的主要參數及計算公式20-180 7.2.1主要參數20-180 7.2.2計算公式20-181 7.2.3液壓馬達主要技術參數概覽20-181 7.3液壓馬達的結構特點20-182 7.4齒輪馬達20-183 7.4.1外嚙合齒輪馬達20-184 7.4.1.1GM5型齒輪馬達20-184 7.4.1.2CM-C型齒輪馬達20-186 7.4.1.3CM-G4型齒輪馬達20-187 7.4.1.4CM-D型

齒輪馬達20-188 7.4.1.5CMZ型齒輪馬達20-189 7.4.1.6CMW型齒輪馬達20-189 7.4.1.7CMK型齒輪馬達20-190 7.4.1.8CM-F型齒輪馬達20-191 7.4.1.9CB-E型齒輪馬達20-192 7.4.2擺線液壓馬達20-193 7.4.2.1BYM型齒輪馬達20-193 7.4.2.2BM-C/D/E/F型擺線液壓馬達20-194 7.5葉片馬達20-197 7.5.1YM型液壓馬達20-197 7.5.1.1YM型中壓液壓馬達20-197 7.5.1.2YM型中高壓液壓馬達20-199 7.5.1.3YM※型低速大扭矩葉片馬達20-200

7.5.2BMS、BMD型葉片擺動馬達20-202 7.6柱塞馬達20-203 7.6.1斜盤式軸向柱塞式馬達20-203 7.6.1.1ZM、XM型柱塞馬達20-204 7.6.1.2HTM(SXM)型雙斜盤軸向柱塞馬達20-205 7.6.1.3PMFBQA型輕型軸向柱塞馬達20-209 7.6.2斜軸式軸向柱塞馬達20-212 7.6.2.1A2F型斜軸式軸向柱塞馬達20-212 7.6.2.2A6V型斜軸式變數馬達20-213 7.6.3徑向柱塞馬達20-214 7.6.3.1NJM型柱塞馬達20-214 7.6.3.21JMD型柱塞馬達20-218 7.6.3.3JM※系列徑向柱塞

馬達20-219 7.6.4球塞式液壓馬達20-227 7.6.4.1QJM型徑向球塞馬達20-227 7.6.4.2QJM型帶制動器液壓馬達20-231 7.6.4.3QKM型液壓馬達20-237 7.7曲軸連杆式徑向柱塞馬達20-240 7.8液壓馬達的選用20-240 7.9擺動液壓馬達20-241 7.9.1擺動液壓馬達的分類20-241 7.9.2擺動液壓馬達產品20-242 7.9.2.1YMD型單葉片擺動馬達20-242 7.9.2.2YMS型雙葉片馬達20-243 7.9.3擺動液壓馬達的選擇原則20-245 第8章 液壓缸 8.1液壓缸的類型20-246 8.2液壓缸的基本

參數20-247 8.3液壓缸的安裝方式20-250 8.4液壓缸的主要結構、材料及技術要求20-256 8.4.1缸體和缸蓋的材料及技術要求20-256 8.4.2缸體端部連接形式20-257 8.4.3活塞20-262 8.4.3.1活塞材料及尺寸和公差20-262 8.4.3.2常用的活塞結構形式20-262 8.4.3.3活塞的密封20-262 8.4.4活塞杆20-266 8.4.5活塞杆的導向、密封和防塵20-269 8.4.5.1導向套的材料和技術要求20-269 8.4.5.2活塞杆的密封20-270 8.4.5.3活塞杆的防塵圈20-272 8.4.6液壓缸的緩衝裝置20-2

73 8.4.7液壓缸的排氣裝置20-273 8.5液壓缸的設計計算20-274 8.5.1液壓缸的設計計算20-274 8.5.2液壓缸性能參數的計算20-275 8.5.3液壓缸主要幾何參數的計算20-277 8.5.4液壓缸結構參數的計算20-279 8.5.5液壓缸的連接計算20-282 8.5.6活塞杆穩定性驗算20-285 8.6液壓缸標準系列20-285 8.6.1工程液壓缸系列20-285 8.6.2冶金設備用標準液壓缸系列20-294 8.6.2.1YHG1型冶金設備標準液壓缸20-294 8.6.2.2ZQ型重型冶金設備液壓缸20-302 8.6.2.3JB系列冶金設備液壓

缸20-307 8.6.2.4YG型液壓缸20-311 8.6.2.5UY型液壓缸20-318 8.6.3車輛用液壓缸系列20-324 8.6.3.1DG型車輛液壓缸20-324 8.6.3.2G※型液壓缸20-327 8.6.4重載液壓缸20-329 8.6.4.1CD/CG型液壓缸20-329 8.6.4.2CG250、CG350等速重載液壓缸尺寸20-343 8.6.5輕載拉杆式液壓缸20-346 8.6.6帶接近開關的拉杆式液壓缸20-354 8.6.7伸縮式套筒液壓缸20-355 8.6.8感測器內置式液壓缸20-357 8.7液壓缸的加工工藝與拆裝方法、注意事項20-358 8.8

液壓缸的選擇指南20-362 第9章 液壓控制閥 9.1液壓控制閥的分類20-366 9.1.1按照液壓閥的功能和用途進行分類20-366 9.1.2按照液壓閥的控制方式進行分類20-366 9.1.3按照液壓閥控制信號的形式進行分類20-366 9.1.4按照液壓閥的結構形式進行分類20-367 9.1.5按照液壓閥的連接方式進行分類20-367 9.2液壓控制元件的性能參數20-368 9.3壓力控制閥20-368 9.3.1溢流閥20-368 9.3.1.1普通溢流閥20-368 9.3.1.2電磁溢流閥20-372 9.3.1.3卸荷溢流閥20-373 9.3.2減壓閥20-373

9.3.3順序閥20-376 9.3.4溢流閥、減壓閥、順序閥的綜合比較20-379 9.3.5壓力繼電器20-379 9.3.6典型產品20-381 9.3.6.1直動型溢流閥及遠程調壓閥20-381 9.3.6.2先導型溢流閥、電磁溢流閥20-385 9.3.6.3卸荷溢流閥20-388 9.3.6.4減壓閥20-392 9.3.6.5順序閥20-400 9.3.6.6壓力繼電器20-404 9.4流量控制閥20-408 9.4.1節流閥及單向節流閥20-408 9.4.2調速閥及單向調速閥20-411 9.4.3溢流節流閥20-415 9.4.4分流集流閥20-415 9.4.5典型產品

20-416 9.4.5.1節流閥20-416 9.4.5.2調速閥20-419 9.4.5.3分流集流閥(同步閥)20-425 9.5方向控制閥20-428 9.5.1方向控制閥的工作原理和結構20-428 9.5.2普通單向閥20-431 9.5.3液控單向閥20-432 9.5.4電磁換向閥20-436 9.5.5電液換向閥20-443 9.5.6其他類型的方向閥20-450 9.5.7典型產品20-453 9.5.7.1單向閥20-453 9.5.7.2液控單向閥20-456 9.5.7.3電磁換向閥20-460 9.5.7.4電液換向閥20-470 9.5.7.5手動換向閥和行程換向

閥20-475 9.6多路換向閥20-482 9.6.1多路換向閥工作原理、典型結構及性能20-482 9.6.2產品介紹20-485 9.6.2.1ZFS型多路換向閥20-485 9.6.2.2ZFS-※※H型多路換向閥20-487 9.6.2.3DF型多路換向閥20-488 9.6.2.4CDB型多路換向閥20-489 9.7疊加閥20-491 9.7.1疊加閥工作原理、典型結構及性能20-491 9.7.2產品介紹20-493 9.8插裝閥20-503 9.8.1插裝閥的工作原理和結構20-504 9.8.2插裝閥的典型組件20-506 9.8.3插裝閥的基本回路20-510 9.8.4

插裝閥典型產品20-511 9.8.4.1力士樂系列插裝閥產品(L系列)20-511 9.8.4.2威格士系列插裝閥20-529 9.9液壓閥的清洗和拆裝20-536 9.10液壓控制元件的選型原則20-537 9.11液壓控制裝置的集成20-538 9.11.1液壓控制裝置的板式集成20-538 9.11.2液壓控制裝置的塊式集成20-542 9.11.3液壓控制裝置的疊加閥式集成20-547 9.11.4液壓控制裝置的插入式集成20-549 9.11.5液壓控制裝置的複合式集成20-550 第10章 液壓輔件與液壓泵站 10.1蓄能器20-551 10.1.1蓄能器的種類及特點20-55

1 10.1.2蓄能器在系統中的應用20-552 10.1.3各種蓄能器的性能及用途20-552 10.1.4蓄能器的容量計算20-553 10.1.5蓄能器的選擇20-553 10.1.6蓄能器產品20-553 10.1.6.1NXQ型囊式蓄能器20-553 10.1.6.2NXQ型囊式蓄膠囊20-555 10.1.6.3HXQ型活塞式蓄能器20-556 10.1.6.4GXQ型隔膜式蓄能器20-557 10.1.6.5GLXQ型管路式蓄能器20-558 10.1.6.6CQP型非隔離式蓄能器(儲氣罐)20-559 10.1.6.7囊式蓄能器站20-560 10.1.6.8活塞式蓄能器站及氮

氣瓶組20-561 10.1.7蓄能器附件20-562 10.1.7.1CQJ型蓄能器充氮工具20-562 10.1.7.2CPU型蓄能器充氮工具20-563 10.1.7.3CDZs-D1型充氮車(氮氣充壓裝置)20-564 10.1.7.4AQF型蓄能器安全球閥20-566 10.1.7.5AJF型蓄能器截止閥20-567 10.1.7.6AJ型蓄能器控制閥組20-568 10.1.7.7QFZ型蓄能器安全閥組20-570 10.1.7.8QF-CR型蓄能器氣體安全閥20-572 10.1.7.9QXF型蓄能器充氣閥20-572 10.1.7.10蓄能器固定組件20-573 10.1.7.

11蓄能器托架20-574 10.1.7.12蓄能器卡箍20-575 10.2篩檢程式20-575 10.2.1篩檢程式的主要性能參數20-576 10.2.2篩檢程式的名稱、用途、安裝、類別、形式及效果20-576 10.2.3推薦液壓系統的清潔度和過濾精度20-577 10.2.4篩檢程式的選擇和計算20-577 10.2.5篩檢程式產品20-578 10.2.5.1WF型吸油濾油器20-578 10.2.5.2WR型吸油濾油器20-578 10.2.5.3WU、XU型吸油濾油器20-579 10.2.5.4ISV型管路吸油篩檢程式20-580 10.2.5.5TF型箱外自封式吸油篩檢程式

20-582 10.2.5.6TRF型吸回油篩檢程式20-585 10.2.5.7GP、WY型磁性回油篩檢程式20-587 10.2.5.8RFA型微型直回式回油篩檢程式20-589 10.2.5.9SRFA型雙筒微型直回式回油篩檢程式20-591 10.2.5.10XNL型箱內回油篩檢程式20-594 10.2.5.11ZU-H、QU-H型壓力管路篩檢程式20-596 10.3熱交換器20-603 10.3.1冷卻器的種類及特點20-603 10.3.2冷卻器的選擇及計算20-603 10.3.3冷卻器產品的性能和規格尺寸20-604 10.3.4電磁水閥20-616 10.3.5GL型冷卻

水篩檢程式20-617 10.3.6加熱器20-617 10.4液壓站20-619 10.4.1液壓站的結構形式20-619 10.4.2典型液壓站產品20-620 10.4.3油箱20-622 10.5溫度儀錶20-624 10.5.1溫度錶(計)20-624 10.5.1.1WS※型雙金屬溫度計20-624 10.5.1.2WTZ型溫度計20-624 10.5.2WTYK 型壓力式溫度控制器20-624 10.5.3WZ※型溫度感測器20-624 10.6壓力儀錶20-624 10.6.1Y系列壓力錶20-624 10.6.2YTXG型磁感式電接點壓力錶20-624 10.6.3Y※TZ型

遠程壓力錶20-624 10.6.4BT型壓力錶20-624 10.6.5壓力錶開關20-624 10.6.5.1KF型壓力錶開關20-624 10.6.5.2AF6E型壓力錶開關20-624 10.6.5.3MS型六點壓力錶開關20-624 10.6.6測壓、排氣接頭及測壓軟管20-624 10.6.6.1PT型測壓排氣接頭20-624 10.6.6.2HF型測壓軟管20-624 10.7空氣濾清器20-624 10.7.1QUQ型空氣濾清器20-624 10.7.2EF型空氣篩檢程式20-624 10.7.3PFB型增壓式空氣濾清器20-624 10.8液位儀錶20-624 10.8.1Y

WZ型液位計20-624 10.8.2CYW型液位液溫計20-624 10.8.3YKZQ型液位控制器20-624 10.9流量儀錶20-624 10.9.1LC12型橢圓齒輪流量計20-624 10.9.2LWGY型渦輪流量感測器20-624 10.10常用閥門20-624 10.10.1高壓球閥20-624 10.10.1.1YJZQ型高壓球閥20-624 10.10.1.2Q21N型外螺紋球閥20-624 10.10.2JZFS系列高壓截止閥20-624 10.10.3DD71X型開閉發信器蝶閥20-624 10.10.4D71X-16對夾式手動蝶閥20-624 10.10.5Q11F-

16型低壓內螺紋直通式球閥20-624 10.11E型減震器20-624 10.12KXT型可曲撓橡膠接管20-624 10.13NL型內齒形彈性聯軸器20-625 10.14管路20-625 10.14.1管路的計算20-625 10.14.2膠管的選擇及注意事項20-625 10.15管接頭20-625 10.15.1金屬管接頭O形圈平面密封接頭20-625 10.15.2錐密封焊接式管接頭20-625 10.15.3卡套式管接頭規格20-625 10.15.4擴口式管接頭規格20-625 10.15.5錐密封焊接式方接頭20-625 10.15.6液壓軟管接頭20-625 10.15.7

快換接頭20-625 10.15.8旋轉接頭20-625 10.15.9螺塞20-625 10.15.10法蘭20-625 10.15.11管夾20-625 10.15.11.1鋼管夾20-625 10.15.11.2塑膠管夾20-625 第11章 液壓控制系統概述 11.1液壓傳動系統與液壓控制系統的比較20-626 11.2電液伺服系統和電液比例系統的比較20-628 11.3液壓控制系統的組成及分類20-628 11.4液壓控制系統的基本概念20-631 11.5液壓控制系統的基本特性20-633 11.5.1電液位置控制系統的基本特性20-635 11.5.2電液速度控制系統的基本特

性20-638 11.6液壓控制系統的特點及其應用20-639 11.6.1液壓控制系統的特點20-639 11.6.2液壓控制系統的應用20-640 第12章 液壓伺服控制系統 12.1液壓伺服控制系統的組成和工作原理20-646 12.2電液伺服閥20-648 12.2.1典型電液伺服閥結構20-653 12.2.2電液伺服閥的基本特性及其性能參數20-657 12.2.3電液伺服閥線圈接法20-661 12.2.4電液伺服閥使用注意事項20-662 12.2.5電液伺服閥故障現象和原因20-663 12.3伺服放大器20-665 12.4電液伺服系統設計20-667 12.4.1全面理

解設計要求20-667 12.4.2擬訂控制方案、繪製系統原理圖20-667 12.4.3動力元件的參數選擇20-668 12.4.4液壓系統固有頻率對加速和制動程度的限制20-675 12.4.5伺服閥選擇注意事項20-675 12.4.6執行元件的選擇20-676 12.4.7回饋感測器的選擇20-677 12.4.8確定系統的方塊圖20-679 12.4.9系統靜動態品質分析及確定校正特性20-679 12.4.10模擬分析20-679 12.5電液伺服系統應用舉例20-682 12.5.1力、壓力伺服系統應用實例20-683 12.5.2流量伺服系統應用實例20-690 12.5.3位

置系統應用實例20-691 12.5.4伺服系統液壓參數的計算實例20-706 12.6主要電液伺服閥產品20-713 12.6.1國內電液伺服閥主要產品20-713 12.6.1.1雙噴嘴擋板力回饋電液伺服閥20-713 12.6.1.2雙噴嘴擋板電回饋(FF109、QDY3、QDY8、DYSF型)電液伺服閥20-715 12.6.1.3動圈式滑閥直接回饋式(YJ、SV、QDY4型)、滑閥直接位置回饋式(DQSF-1型)電液伺服閥20-716 12.6.1.4動圈力綜合式壓力伺服閥(FF119)、雙噴嘴-擋板噴嘴壓力回饋式伺服閥(DYSF-3P)、P-Q型伺服閥(FF118)、射流管力回饋伺

服閥(CSDY、FSDY、DSDY、SSDY)20-717 12.6.1.5動圈力式伺服閥(SV9、SVA9)20-718 12.6.1.6動圈力式伺服閥(SVA8、SVA10)20-719 12.6.2國外主要電液伺服閥產品20-720 12.6.2.1雙噴嘴力回饋式電液伺服閥(MOOG)20-720 12.6.2.2雙噴嘴力回饋式電液伺服閥(DOWTY、SM4)20-721 12.6.2.3雙噴嘴力回饋式電液伺服閥(MOOG D761)和電回饋式電液伺服閥(MOOG D765)20-722 12.6.2.4直動電回饋式伺服閥(DDV)MOOG D633及D634系列20-724 12.6.

2.5電回饋三級伺服閥MOOG D791和D792系列20-725 12.6.2.6EMG伺服閥SV1-1020-727 12.6.2.7MOOG系列電回饋伺服閥20-729 12.6.2.8伺服射流管電回饋高回應二級伺服閥MOOG D661 GC系列20-732 12.6.2.9射流管力回饋Abex和射流偏轉板力回饋伺服閥MOOG26系列20-735 12.6.2.10博世力士樂(Bosch Rexroth)雙噴嘴擋板機械(力)和/或電回饋二級伺服閥4WS(E)2EM6-2X、4WS(E)2EM(D)10-5X、4WS(E)2EM(D)16-2X和電回饋三級伺服閥4WSE3EE20-735

12.6.3電液伺服閥的外形及安裝尺寸20-742 12.6.3.1FF101、FF102、MOOG30和DOWTY30型電液伺服閥外形及安裝尺寸20-742 12.6.3.2FF102、YF7、MOOG31、MOOG32、DOWTY31和DOWTY32型伺服閥外形及安裝尺寸20-742 12.6.3.3FF113、YFW10和MOOG72型電液伺服閥外形及安裝尺寸20-743 12.6.3.4FF106A、FF108和FF119型伺服閥外形及安裝尺寸20-744 12.6.3.5FF106、FF130、YF13、MOOG35和MOOG34型電液伺服閥外形及安裝尺寸20-745 12.6.3.

6QDY系列電液伺服閥外形及安裝尺寸20-745 12.6.3.7FF131、YFW06、QYSF-3Q、DOWTY45514659和MOOG78型伺服閥外形及安裝尺寸20-746 12.6.3.8FF109和DYSF-3G-111型電回饋三級閥外形及安裝尺寸20-747 12.6.3.9SV(CSV)和SVA型電液伺服閥外形及安裝尺寸20-748 12.6.3.10YJ741、YJ742和YJ861型電液伺服閥外形及安裝尺寸20-748 12.6.3.11CSDY和Abex型電液伺服閥外形及安裝尺寸20-749 12.6.3.12MOOG760、MOOGG761和MOOGG631型電液伺服閥

外形及安裝尺寸20-750 12.6.3.13MOOG D633、D634系列直動式電液伺服閥外形及安裝尺寸20-751 12.6.3.14MOOG D791和D792型電回饋三級閥外形及安裝尺寸20-752 12.6.3.15MOOG D662~D665系列電液伺服閥外形及安裝尺寸20-753 12.6.3.16博世力士樂電回饋三級閥4WSE3EE(16、25、32)外形及安裝尺寸20-754 12.7伺服液壓缸產品20-755 12.7.1US系列伺服液壓缸20-755 12.7.2海特公司伺服液壓缸20-756 12.7.3REXROTH公司伺服液壓缸20-758 12.7.4MOOG公

司伺服液壓缸20-759 12.7.5ATOS公司伺服液壓缸20-761 12.8液壓伺服系統設計禁忌20-762 12.9液壓伺服系統故障排除20-763 第13章 電液比例控制系統 13.1電液比例控制系統的組成和工作原理20-767 13.2比例電磁鐵20-770 13.3比例放大器20-771 13.4電液比例壓力閥20-791 13.5電液比例流量閥20-797 13.6電液比例方向閥20-801 13.7電液比例壓力流量複合閥20-808 13.8負載壓力補償用壓力補償器20-808 13.9比例控制裝置的典型曲線20-810 13.10比例控制系統典型原理圖20-814 13.

11閉環控制系統的分析方法20-829 13.12比例閥的選用20-831 13.13國內主要比例閥產品20-834 13.13.1BQY-G型電液比例三通調速閥20-834 13.13.2BFS和BFL比例方向流量閥20-834 13.13.3BY※型比例溢流閥20-834 13.13.43BYL型比例壓力流量複合閥20-835 13.13.54BEY型比例方向閥20-835 13.13.6BYY型比例溢流閥20-836 13.13.7BJY型比例減壓閥20-836 13.13.8DYBL和DYBQ型比例節流閥20-836 13.13.9BPQ型比例壓力流量複合閥20-837 13.13.1

04B型比例方向閥20-837 13.13.114WRA型電磁比例方向閥20-838 13.13.124WRE型電磁比例方向閥20-839 13.13.134WRZH型電液比例方向閥20-840 13.13.14DBETR型比例壓力溢流閥20-842 13.13.15DBE/DBEM型比例溢流閥20-843 13.13.163DREP6三通比例壓力控制閥20-844 13.13.17DRE/DREM型比例減壓閥20-844 13.13.18ZFRE6型二通比例調速閥20-845 13.13.19ZERE※型二通比例調速閥20-847 13.13.20ED型比例遙控溢流閥20-848 13.13

.21EB型比例溢流閥20-848 13.13.22ERB型比例溢流減壓閥20-849 13.13.23EF(C)G型比例(帶單向閥)流量閥20-849 13.14國外主要比例閥產品概覽20-850 13.14.1BOSCH比例溢流閥(不帶位移控制)20-850 13.14.2BOSCH比例溢流閥和線性比例溢流閥(帶位移控制)20-851 13.14.3BOSCH NG6帶集成放大器比例溢流閥20-852 13.14.4BOSCH NG10比例溢流閥和比例減壓閥(帶位移控制)20-853 13.14.5BOSCH NG6三通比例減壓閥(不帶/帶位移控制)20-854 13.14.6BOSCH

NG6、NG10比例節流閥(不帶位移控制)20-855 13.14.7BOSCH NG6、NG10比例節流閥(帶位移控制)20-856 13.14.8BOSCH NG10帶集成放大器比例節流閥(帶位移控制)20-857 13.14.9BOSCH比例流量閥(帶位移控制及不帶位移控制)20-858 13.14.10BOSCH不帶位移感測器比例方向閥20-860 13.14.11BOSCH比例方向閥(帶位移控制)20-861 13.14.12BOSCH帶集成放大器比例方向閥20-862 13.14.13BOSCH比例控制閥20-863 13.14.14BOSCH插裝式比例節流閥20-866 13.1

4.15Atos主要比例閥20-867 13.14.16Vickers主要比例閥20-868 13.14.16.1KDG3V、KDG4V比例方向閥20-868 13.14.16.2K(A)DG4V-3,K(A)TDG4V-3比例方向閥20-875 參考文獻20-881  

添加奈米填充劑對聚乳酸/熱塑性聚酯彈性體摻合體性質之影響

為了解決氮氣黏度的問題,作者任庭妮 這樣論述:

目錄摘要 iAbstract iii目錄 v圖目錄 viii表目錄 xii第一章 緒論 1第二章 文獻回顧 22.1聚乳酸(Poly(lactic acid), PLA) 22.2熱塑性聚酯彈性體(Thermoplastic Polyester Elastomer, TPEE) 42.3 PLA/擴鏈劑 52.4 TPEE/擴鏈劑 62.5 PLA/TPEE摻合體 72.6 PLA/碳材奈米複合材料 92.7 TPEE/碳材奈米複合材料 102.8 PLA/TPEE/填充材奈米複合材料 12第三章 實驗

143.1材料 143.2儀器設備 163.3實驗流程 193.4樣品製備 203.4.1雙螺桿押出樣品製備 203.4.2射出成型標準試片 223.4.3熱壓成型試片 223.5性質分析 223.5.1場發射式電子顯微鏡 223.5.2掃描式電子顯微鏡 233.5.3穿透式電子顯微鏡 233.5.4偏光顯微鏡 233.5.5微差掃描熱卡計 243.5.6熱重分析儀 243.5.7萬能試驗儀 243.5.8耐衝擊測試儀 253.5.9動態機械熱分析儀 253.5.10流變儀 253.5

.11導電測試 26第四章 結果與討論Part Ⅰ 274.1碳材選擇性分佈之分析 274.2相形態 294.3結晶及熔融行為 374.4熱穩定性 454.5機械性質 484.6流變性質 594.7導電性質 62第五章 結果與討論 Part Ⅱ 655.1相形態 655.2結晶及熔融行為 725.3熱穩定性 815.4機械性質 855.5流變性質 955.6導電性質 98第六章 結論 101參考文獻 105圖目錄圖2.1聚乳酸簡易的生產過程以及反應前驅物須注意的性質[2] 3圖2.

2常見的TPEE結構[7] 4圖2.3預測之PLA與擴鏈劑反應機制[9] 5圖2.4預測之TPEE與擴鏈劑之反應機制[9] 6圖2.5預測之PLA/TPEE/ADR偶聯反應機制[9] 9圖2.6 (a) TPEE、(b) TPEE-GNS-0.1和(c) TPEE-f-GNS-0.1樣品中的相結構示意圖(藍色球體代表硬PBT域,深色多邊形為GNS,灰色連續部分軟PTMEG相)[16] 11圖4.1樣品2000x SEM影像:(a) PLA, (b) TPEE, (c) P7T3 32圖4.2樣品2000x SEM影像:(a) P7T3T03, (b) P7T

3T06, 33(c) P7T3T10, (d) P7T3T15, (e) P7T3T20, (f) P7T3T30 33圖4.3樣品5000x SEM影像:(a) P7T3, (b) P7T3T03, (c) P7T3T06, 34(d) P7T3T10, (e) P7T3T15, (f) P7T3T20, (g) P7T3T30 34圖4.4樣品10k x SEM影像:(a) P7T3, (b) P7T3T03, (c) P7T3T06, 35(d) P7T3T10, (e) P7T3T15, (f) P7T3T20, (g) P7T3T30 35圖4.

5樣品晶體穩定成長之20x POM影像:(a) PLA(80 ℃), 36(b) TPEE(140 ℃), (c) P7T3-TPEE(140 ℃), (d) P7T3-PLA(80 ℃),(e) P7T3T03(80 ℃) 36圖4.6樣品以10 ℃/min 速率降溫之DSC曲線圖:(a) 奈米複合材料樣品; (b) 各樣品之PLA結晶峰局部放大; (c) 各樣品之TPEE結晶峰局部放大; (d) 純PLA結晶峰局部放大 40圖4.7 樣品以10 ℃/min速率降溫後以20 ℃/min升溫之DSC曲線圖 40圖4.8 樣品以40 ℃/min 速率降溫之DSC曲線圖

41圖4.9 樣品以40 ℃/min速率降溫後以20 ℃/min升溫之DSC曲線圖 41圖4.10 樣品於氮氣環境下以10 ℃/min 升溫之 (a) TGA 曲線圖; (b) DTG曲線圖 46圖4.11 樣品應力應變曲線圖 51圖4.12 樣品之楊氏模數 51圖4.13 樣品之斷裂延伸率 51圖4.14 樣品之彎曲模數 52圖4.15 樣品之耐衝擊強度 52圖4.16 樣品耐衝擊試驗斷面之1000x:(a) P7T3, (c) P7T3T03, 53(e) P7T3T15, (g) P7T3T30; 及2000x:(b) P7T3, (d

) P7T3T03,(f) P7T3T15, (h) P7T3T30 SEM影像 53圖4.17樣品之儲存模數對溫度關係圖 57圖4.18樣品之Tan δ對溫度關係圖 57圖4.19樣品於210 ℃下複黏度對角頻率關係圖 61圖4.20樣品於210 ℃下儲存模數對角頻率關係圖 61圖4.21樣品於210 ℃下損失模數對角頻率關係圖 61圖4.22樣品體電阻率 63圖5.1樣品2000x SEM影像:(a) PLA, (b) TPEE, 67(c) P5T5, (d) P5T5A 67圖5.2樣品2000x SEM影像:(a) PTAT03,

(b) PTAT06, 68(c) PTAT10, (d) PTAT15, (e) PTAT20, (f) PTAT30 68圖5.3樣品5000x SEM影像:(a) P5T5, (b) P5T5A, (c) PTAT03, 69(d) PTAT06, (e) PTAT10, (f) PTAT15, (g) PTAT20 (h) PTAT30 69圖5.4樣品10k x SEM影像:(a) P5T5, (b) P5T5A, (c) PTAT03, 70(d) PTAT06, (e) PTAT10, (f) PTAT15, (g) PTAT20 (h) PTAT

30 70圖5.5樣品PTAT06之TEM影像:(a) 60k x, (b) 80k x 71圖5.6樣品PTAT20之TEM影像:(a) 40k x, (b) 60k x 71圖5.7樣品以10 ℃/min 速率降溫之DSC曲線圖:(a) 奈米複合材料樣品; (b) 各樣品之PLA結晶峰局部放大; (c) 各樣品之TPEE結晶峰局部放大 75圖5.8樣品以10 ℃/min速率降溫後以20 ℃/min升溫之DSC曲線圖 75圖5.9樣品以40 ℃/min 速率降溫之DSC曲線圖 76圖5.10樣品以40 ℃/min速率降溫後以20 ℃/min升溫之DSC曲線

圖 76圖5.12樣品應力應變曲線圖 88圖5.13樣品之楊氏模數 88圖5.14樣品之段裂延伸率 88圖5.15樣品之彎曲模數 89圖5.16樣品之耐衝擊強度 89圖5.17樣品耐衝擊試驗斷面之1000x:(a) P5T5, (c) P5T5A, 90(e) PTAT10, (g) PTAT30; 及2000x:(b) P5T5, (d) P5T5A, 90(f) PTAT10, (h) PTAT30 SEM影像 90圖5.18樣品之儲存模數對溫度關係圖 93圖5.19樣品之Tan δ對溫度關係圖 93圖5.20樣品於210

℃下複黏度對角頻率關係圖 97圖5.21樣品於210 ℃下儲存模數對角頻率關係圖 97圖5.22樣品於210 ℃下損失模數對角頻率關係圖 97圖5.23樣品體電阻率 99表目錄表3.1樣品代號與配方part Ⅰ 20表3.2樣品代號與配方part Ⅱ 21表4.1樣品表面能與濕潤係數 28表4.2樣品以10 ℃/min及40 ℃/min降溫之DSC數據 42表4.3樣品以10 ℃/min速率降溫後以20 ℃/min升溫之DSC數據 43表4.4樣品以40 ℃/min速率降溫後以20 ℃/min升溫之DSC數據 44表4.5樣品於氮氣環

境下以10 ℃/min升溫之TGA數據 47表4.6樣品拉伸、彎曲以及耐衝擊測試之數據 54表4.7樣品動態機械性質之數據 58表4.8樣品體電阻率之數據 64表5.1樣品以10 ℃/min降溫之DSC數據 77表5.2樣品以40 ℃/min降溫之DSC數據 78表5.3樣品以10 ℃/min速率降溫後以20 ℃/min升溫之DSC數據 79表5.4樣品以40 ℃/min速率降溫後以20 ℃/min升溫之DSC數據 80表5.5樣品於氮氣環境下以10 ℃/min升溫之TGA數據 84表5.6樣品拉伸、彎曲以及耐衝擊測試之數據 91表5

.7樣品動態機械性質之數據 94表5.8樣品體電阻率之數據 100