氟分子量的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列問答集和資訊懶人包

氟分子量的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦水谷淳寫的 超實用.科學用語圖鑑:物理、電、化學、生物、地科、宇宙6大領域讓你一次搞懂136個基礎科學名詞 和金炳珉的 奇妙的元素週期表圖鑑百科(獨家附贈「週期表發展史典藏海報」):從電子到星星,從鬼火到可樂,透過趣聞歷史與現代應用,探索118個元素與宇宙奧祕都 可以從中找到所需的評價。

另外網站低分子量含氟聚合物的制备、官能化及特性也說明:低分子量含氟聚合物是重要的新型功能材料,在国防工业中占有特殊...

這兩本書分別來自有方文化 和美藝學苑社所出版 。

國立陽明交通大學 材料科學與工程學系所 韋光華所指導 陳重豪的 調控高分子給體二維共軛側鏈與設計共軛中心核與pi-架橋小分子受體結構與性質之系統性研究 (2021),提出氟分子量關鍵因素是什麼,來自於有機太陽能電池、高分子側鏈工程、反式元件、低掠角廣角度散色、低掠角小角度散色。

而第二篇論文國立臺灣科技大學 機械工程系 周振嘉所指導 蘇柏諺的 靜電紡絲—循環熱壓法製備PVDF膜之多態結晶相分析 (2021),提出因為有 靜電紡絲、PVDF、熱壓、相含量、單相結晶度、熱穩定性的重點而找出了 氟分子量的解答。

最後網站分子量对α相聚偏氟乙烯介电性能与储能特性的影响 - 功能材料則補充:摘要 制备了4种不同分子量的α相聚偏氟乙烯(PVDF)膜,研究了PVDF分子量对其介电性能与储能特性的影响。研究结果表明,低分子量PVDF膜具有更窄的电滞回线,其充放电效率达到 ...

接下來讓我們看這些論文和書籍都說些什麼吧:

除了氟分子量,大家也想知道這些:

超實用.科學用語圖鑑:物理、電、化學、生物、地科、宇宙6大領域讓你一次搞懂136個基礎科學名詞

為了解決氟分子量的問題,作者水谷淳 這樣論述:

科學素養第一步 從AI時代的科技用語,到生命誕生的機制── 深入淺出,解開生活在現代所必須理解的重要科學用語      你是不是常覺得「科學新聞很難懂」,或是「那些科學家所說的話我都聽不太懂」。會有這種感覺,主要原因之一,就是不了解科學語言與那些專有名詞的意思。     本書就是為了打破大家對於科學那種霧裡看花的感覺而誕生的。書中從【物理、電學、化學、生物、地球科學、宇宙】六大領域中,精選136個基本科學詞語,以有趣生動的圖文方式,解釋這些科學用語的大略意義、容易令人誤解的理由,以及與日常生活間的關係。     不管你是曾經學過理化科學但已經忘記的成年人,或是正在學習苦讀的學生,這本書讓你

從此對於科學不再感到害怕,也讓我們生活周遭的科學用語變得淺顯易懂,不再一知半解。     【6大領域】   物理Physics   運動/力、場/能量/功/向量/慣性、離心力/光譜/重力/熵/核分裂、核融合……     電Electricity   電荷、電場/磁/半導體、電晶體/超導/雷射/LED/人工智慧/量子電腦……     化學Chemistry   元素、同位素/化合物/週期表/固體、液體、氣體/卡路里/酸、鹼、中和/奈米碳管……     生物Biology   細胞/光合作用、葉綠體/基因體、基因/DNA、RNA/基因操作、基因體編輯/免疫、疫苗、過敏……     地科Geogra

phy   低氣壓、高氣壓/鋒面/颱風/火山、地震/震度、地震規模/頁岩氣、頁岩油、甲烷水合物……     宇宙Cosmology   光年、天文單位、秒差距/彗星/星系/黑洞/大霹靂、宇宙暴脹/重力波/暗物質、暗能量……   本書特色     ★一個跨頁解釋一個或一組相關科學用語,沒有艱澀的觀念,而是用比喻的方式帶你輕鬆進入   ★6大領域,涵蓋報章雜誌常出現和討論的科學用語,你想從哪個領域開始閱讀都可以   ★插畫搭配文字,更容易理解,留下具體印象   ★六個科學專欄,探討科學的本質,以及如何看待科學,避免被騙或誤用   審閱&推薦     書中以淺顯文字解釋一些常見的科學名詞,加

上插圖輔助,讓讀者能快速吸收了解。──屋頂上的天文學家主理人 李昫岱     即使短篇幅仍能利用易懂的圖片及親人的文字傳達清楚的物理概念,推薦給在學或是想一探科普新聞用語的你。──物理教學YouTuber吳旭明 × 蔡佳玲     要了解核心理論、貫通基本概念,第一步就是先清楚了解相關專有名詞的定義,與這些專有名詞間的關係。──北一女中生物科教師 蔡任圃     《超實用.科學用語圖鑑》像是實體版的簡要科學維基,提供了豐富的圖文說明科學專有名詞,而且在學科主題間加上了科學方法的內容,是兼具科學知識和方法的科普書。──十二年國教自然領綱委員 鄭志鵬(小P老師)     (按姓氏筆畫序排列)   

氟分子量進入發燒排行的影片

物理治療:http://physicaltherapyclass.com/
運動傷害:https://sites.google.com/s/1cieisPHB2Xkrn1em8vthbJgglWmCOZH4/p/1knFDZuDHNtQIb04gBSTm2fGkexK1QwX4/edit


什麼是物理治療?
  什麼是物理治療?簡單的說,就是利用光、電、水、冷、熱、力等物理因子和運動治療,來評估並治療病患的問題。舉例來說,微波是一種電磁波,利用微波造成水分子的震盪可以來加熱食物。在物理治療中,就利用微波的此一特性,可震盪人體組織內的水分子,提高深部組織的溫度,加速血液循環,促進患部的癒合速度,也有減輕疼痛的效果。因此利用微波來治療,就是一種物理治療。
歸納起來,物理治療的方法如下:
(一)光療--紫外線、低能量雷射
(二)電療--低頻電刺激、中頻干擾波
(三)水療--溫水療、冷水療、熱水療、冰水療、冷熱水交替治療、水中運動治療
(四)冷療--冷敷、冰敷、冰按摩、冷氣治療
(五)熱療--濕熱療、乾熱療、超音波、短波、微波、蠟療、紅外線及熱敷包
(六)力療--操作治療、牽拉運動、牽引、按摩
(七)運動治療(Movement)--有伸展運動、主動運動、阻力運動、耐力運動、呼吸運動、平衡及協調運動、功能性運動、神經肌肉誘發技巧、姿勢矯正療法等。徒手治療(Manual):有關節鬆動術、按摩、筋膜鬆弛術、被動運動、其他特殊技巧。
§低能量雷射:
  雷射是一種激發光子束,與一般光線不同的是,它具有單一頻率、單一色調、單一相位及集中光束的特性。一般醫用雷射,主要分為兩大類:

  第一類是大家比較熟悉的高能量雷射,又稱為熱雷射或硬雷射,其能量通常為數十至數百瓦特,外科醫師常利用其高熱能以達到凝固止血及切割組織的作用。

  另一類是低能量雷射,又叫冷雷射或軟雷射,其能量通常是數毫瓦特至數十毫瓦特。當這類雷射照射人體後,經由其電磁效應或光化學作用,會影響體內種種生理及代謝反應,例如血管擴張、去氧核糖核酸( DNA )合成增加、膠原組織增生及免疫功能的增進等。

  由於低能量雷射具有上述生物刺激的特性,因此它可用來治療疼痛,並可增進傷口及組織復原。此種治療的副作用極低,少數病人會覺得治療部位有針刺感,其他副作用還包括噁心、頭暈、局部紅斑或皮膚色素增加等。由於雷射對眼睛有害,因此不可直接照射眼睛,治療時也要帶上墨鏡以保護眼睛。一個部位治療時間為數秒至數分鐘,治療的效果通常在三至五次內會顯現出來。目前在醫院中常用的有氦氖雷射及鎵?紅外線雷射等。

  在風濕病的復健方面,低能量雷射可用來治療各種軟組織疾病,如肌腱炎、肌肉肌膜疼痛症候群等,其成效約為 75 ~ 80% 。

§電療:
  根據史書記載,最早使用電刺激來治療骨關節疾病可追溯到西元前四世紀。當時的希臘人和羅馬人發現一種魚可產生一百至一百五十伏特的電流。他們就利用這種魚產生的電流來治療足部關節炎。

  電刺激治療風濕關節炎最重要的目的是止痛,此外,電刺激也可以用來增強肌力,延緩或避免肌肉萎縮,減輕肌肉痙攣和增進血液循環。

  電刺激的種類很多,其中與骨關節疾病之治療有關的可分為兩大類:一是低頻波(一般稱為經皮神經電刺激),另一則是中頻波(一般稱為中頻干擾波)。低頻波是指頻率在 1000 以下的電波,一般多採用 0 ~ 100; 中頻波的頻率是 1000 ~ 1000000 (一百萬)之間,但頻率超過 10000 (壹萬)以上的電波會產生熱,所以臨床上中頻波頻率均在 1000 至 10000 之間。經皮神經電刺激就是把電流通過黏在皮膚上的電極,以達刺激神經而得止痛的效果,成效不錯且無副作用,病人甚至可以買回家自行使用。

  中頻干擾波一般是採用兩組電極(一組兩個),其頻率相差為 0 ~ 100 之間,如 4100 及 4000 ,通電後兩組電極會以中頻波穿透皮膚,而在深部組織發生電流干擾,產生一個 0 ~ 100 的低頻波。

  採用中頻波的原因是穿透皮膚較容易,對皮膚的刺激也小,電流強度可以調得較大。

  臨床研究顯示,電刺激對於下背痛、退化性關節炎、類風濕性關節炎、韌帶扭傷、肌腱炎(如網球肘)、肌肉及肌膜疼痛症候群等均有顯著的成效。

  很多慢性關節炎病人因為長期藥物治療而導致胃及十二指腸潰瘍,可以考慮合併使用電刺激,以減少藥物的使用。

  此外,雷諾氏症候群病人或是交感神經失營養症者,也可用電流刺激局部患處或相關的交感神經節,以增進血液循環。

  而當風濕關節炎病人發生週邊神經病變時,也可用電刺激來減輕疼痛或是延緩肌肉萎縮。

§水療:
  水療通常使用熱水,所以也算是淺層熱療的一種。除了利用水的熱度來降低肌肉痙攣,減輕關節疼痛之外,水還具有浮力及黏稠度。此特性使水療能提供患者同時做各種運動而不致傷害關節。此外,大多數醫院的水療槽內裝有馬達,可將空氣與水混合打入水療槽,造成渦流,具有按摩的效果。

  水療的種類很多, 簡單的如家庭用的浴缸、公共浴室。一般醫院則依其規模大小而裝設各種上肢、下肢及全身水療槽、八字型水療槽或治療池等。此外,溫泉療法、泥漿療法亦可說是水療的一種。有人說溫泉或泥漿中的礦物質會改善關節炎,但亦有人反對此說法。

§冷療:
  冷療的基本生理作用是使血管收縮,降低局部新陳代謝,壓抑神經的興奮及降低神經傳導速度。對於風濕關節炎而言,冷療可降低肌肉痙攣,減輕關節疼痛。

  與熱療不同的是,冷療可止血、消腫,故適用於急性關節炎或骨關節急性外傷。有些病人在運動治療後會有疼痛、腫脹的現象,也可以用冷療來消除。

  冷療的種類有很多,如浸泡法、冷(冰)敷法、冰塊按摩法及噴霧法等。

  浸泡法就是把要治療的肢體浸入 0 至 10 ℃的冷水中。

  冷敷法有很多種,常用的是家庭用的冰敷袋,只要把冰水放入橡皮袋或塑膠袋即可。亦可使用含有矽膠的冰敷袋,使用前先放入冰箱上層,使用時再取出即可。必要時可將冰敷袋充氣後壓迫患處,以止血消腫。其他還有即冷式的化學冰敷袋,使用時將袋子一壓,其內容物會產生化學作用而迅即變冷。

  冰塊按摩法是用冰塊按摩患處。為了方便起見,使用前可先把冰塊作成杯形或圓柱形,以便於局部按摩。

  噴霧法是將甲基氟( methylfluoride )等化學物質裝入容器中,使用時可噴出冷凍氣體,常用來治療肌肉疼痛或急性運動傷害。在國外風濕病醫師做關節穿刺前也常用來減輕病人的痛苦。國內有些醫院也裝設大型的噴霧式冷療機。

  冷療的治療時間為五至二十分鐘。冷療初期會覺得冰冷,接著會感覺燒燒的,最後會有點酸痛、麻木。當皮膚變白發青時,應立即中止治療,以免凍傷。罹患周邊血管病變、雷諾氏症候群(手指遇冷會發白發紅)或是對於冷療過敏的人,都不適合做冷療。

§熱療:
  熱療最重要的功效有五:
   (1) 減輕疼痛,
   (2) 降低肌肉痙攣,
   (3) 減輕關節的僵直感,
   (4) 增進膠原組織的延展性,以增進關節活動度,
   (5) 增進血液循環。

  根據穿透人體組織的深淺,可將熱療分為淺層及深層熱療。淺層熱療透熱深度小於一公分,包括熱敷包、熱水袋、烤燈、紅外線、電毯、蠟療、微粒療法( fluidotherapy )等。深層熱療又稱為透熱療( diathermy ),其熱量可深入三到六公分,包括短波、微波及超音波等。

  熱敷是常見的一種熱療方式,在家裡可以用水煮、化學生熱、微波爐加熱等方式的熱敷包包上毛巾,敷在患部 20 到 30 分鐘即可。電毯,也是很方便的一種熱敷方式,一般電毯是乾熱式的,目前市面上也有溼熱式電毯,即利用吸收空氣中水分或直接可包潮布,其效果比乾熱式者為佳。熱水袋是種便宜簡單的熱敷方法,只要將熱水注入熱水袋內封緊,外包乾或微濕毛巾即可。

  熱敷用品不一定愈貴愈好,只要個人使用方便有效即可,在購買市面上各式各樣的熱敷用品應事先了解使用與保存的方法。使用熱療最主要是避免燙傷,熱敷不是愈熱愈好,也不是愈久愈好,所以使用電毯最好能夠定時,避免睡覺時用,感覺遲鈍或喪失者應多包一層毛巾或溫度不要太高,使用時間 20 至 30 分鐘就夠了,超過 30 分鐘效果差不多,且就算溫度不高時間夠長也會造成燙傷的。在此吾人不建議用熱毛巾作熱敷,因為熱毛巾保溫效果較差且容易燙傷。

  其他熱療方式如紅外線燈屬乾熱式熱療,有時會因太乾燥而皮膚不適。

  在物理治療部門除使用熱敷包外,也會使用所謂深部熱療或透熱療法,一般是利用高頻的電磁波例如短波、微波、或者用超音波等,深部熱療可穿透到組織的深部,但有其適應症與禁忌症,必須由專業的物理治療人員施行,否則容易發生危險。

調控高分子給體二維共軛側鏈與設計共軛中心核與pi-架橋小分子受體結構與性質之系統性研究

為了解決氟分子量的問題,作者陳重豪 這樣論述:

此研究中,我們通過引入具有(苯並二噻吩)-(噻吩)(噻吩)-四氫苯並惡二唑(BDTTBO)主鏈的新型供體-受體(D/A)共軛聚合物製備了用於有機光伏(OPV)的三元共混物。在BDTTBO單體中BDT供體單元上修飾不同的共軛側鏈聯噻吩 (BT)、苯並噻吩 (BzT) 和噻吩並噻吩 (TT)(記為 BDTTBO-BT、BDTTBO-BzT 和 BDTTBO-TT)。然後,我們將 BDTTBO-BT 或 BDTTBO-BzT 或 BDTTBO-TT 與聚(苯並二噻吩-氟噻吩並噻吩)(PTB7-TH)結合起來,以擴大太陽光譜的吸收並調整活性層中 PTB7-TH 和富勒烯的分子堆積,從而增加短路電流密

度。我們發現參入10%的BDTTBO-BT高分子以形成 PTB7-TH:BDTTBO-BT:PC71BM 形成三元共混物元件活性層可以將太陽能元件的功率轉換效率從 PTB7-TH 的二元共混物元件 9.0% 提高到 10.4%: PC71BM 轉換效率相對增長超過 15%。於第二部分,我們比較在BDTTBO單體中BDT供體單元上修飾硫原子或氯原子 取代和同時修飾硫原子和氯原子取代的側鏈聚合物供體與小分子受體光伏的功率轉換效率 (PCE) 的實驗結果與由監督產生的預測 PCE。使用隨機森林算法的機器學習 (ML) 模型。我們發現 ML 可以解釋原子變化的聚合物側鏈結構中的結構差異,因此對二元共混

系統中的 PCE 趨勢給出了合理的預測,提供了系統中的形態差異,例如分子堆積和取向被最小化。因此,活性層中分子取向和堆積導致的結構差異顯著影響 PCE 的預測值和實驗值之間的差異。我們通過改變其原始聚合物聚[苯並二噻吩-噻吩-苯並惡二唑] (PBDTTBO) 的側鏈結構合成了三種新的聚合物供體。同時修飾硫原子和氯原子取代的側鏈結構用於改變聚合物供體的相對取向和表面能,從而改變活性層的形態。 BDTSCl-TBO:IT-4F 器件的最高功率轉換效率 (PCE) 為 11.7%,與使用基於隨機森林算法的機器學習預測的 11.8% 的 PCE 一致。這項研究不僅提供了對新聚合物供體光伏性能的深入了解

,而且還提出了未明確納入機器學習算法的形態(堆積取向和表面能)的可能影響。於第三部分,為了理解下一代材料化學結構的設計規則提高有機光伏(OPV)性能。特別是在小分子受體的化學結構不僅決定了其互補光吸收的程度,還決定了與聚合物供體結合時本體異質結 (BHJ) 活性層的形態。通過正確選擇受體實現優化的OPV 元件性能。在本研究中,我們選擇了四種具有不同共軛核心的小分子受體——稠環核心茚二噻吩、二噻吩並茚並茚二噻吩(IDTT)、具有氧烷基-苯基取代的IDTT稠環核心、二噻吩並噻吩-吡咯並苯並噻二唑結構相同的端基,標記為 ID-4Cl、IT-4Cl、m-ITIC-OR-4Cl 和 Y7,與寬能帶高分子

PTQ10 形成二共混物元件。我們發現基於 Y7 受體的器件在所有二元混合物器件中表現出最好的光伏性能,功率轉換效率 (PCE) 達到 14.5%,與具有 10.0% 的 PCE 的 ID-4Cl 受體相比,可以提高 45%主要歸因於短路電流密度 (JSC) 和填充因子 (FF) 的增強,這是由於熔環核心區域中共軛和對稱梯型的增加,提供了更廣泛的光吸收,誘導面朝向並減小域尺寸。該研究揭示了核心結構單元在影響有源層形態和器件性能方面的重要性,並為設計新材料和優化器件提供了指導,這將有助於有機光伏技術的發展。最後,我們比較了具有 AD-A´-DA 結構的合成小分子受體——其中 A、A´ 和 D 分

別代表端基、核心和 π 價橋單元—它們與有機光伏聚合物 PM6 形成二共混物元件。 增加核苝四羧酸二亞胺 (PDI) 單元的數量並將它們與噻吩並噻吩 (TT) 或二噻吩吡咯 (DTP) π 橋單元共軛增強了分子內電荷轉移 (ICT) 並增加了有效共軛,從而改善了光吸收和分子包裝。 hPDI-DTP-IC2F的吸收係數具有最高值(8 X 104 cm-1),因為它具有最大程度的 ICT,遠大於 PDI-TT-IC2F、hPDI-TT-IC2F和 PDI-DTP-IC2F。 PM6:hPDI-DTP-IC2F 器件提供了 11.6% 的最高功率轉換效率 (PCE);該值是 PM6:PDI-DTP-

IC2F (4.8%) 設備的兩倍多。從一個 PDI 核心到兩個 PDI 核心案例的器件 PCE 的大幅增加可歸因於兩個 PDI 核心案例具有 (i) 更強的 ICT,(ii) 正面分子堆積,提供更高的和更平衡的載波遷移率和 (iii) 比單 PDI 情況下的能量損失更小。因此,越來越多的 PDI 單元與適當的髮色團共軛以增強小分子受體中的 ICT 可以成為提高有機光伏效率的有效方法

奇妙的元素週期表圖鑑百科(獨家附贈「週期表發展史典藏海報」):從電子到星星,從鬼火到可樂,透過趣聞歷史與現代應用,探索118個元素與宇宙奧祕

為了解決氟分子量的問題,作者金炳珉 這樣論述:

  你知道,我們的身體是由碳、氫、氧、氮、硫、磷和鈣等60種元素所組成的嗎?   你能想像,不是只有韓劇「來自星星的你」都教授來自星星,而是世界本身就是從星辰中誕生的嗎?   如果此刻的你、你的孩子、你的學生正在為學習元素週期表而感到頭痛,或就要崩潰了嗎?   「請趕快翻開本書,放下對化學的偏見,一起突破瓶頸,不再迷惘探索!」──阿簡生物筆記‧阿簡老師/國立臺灣大學化學系名譽教授‧陳竹亭/KOL人氣教師‧瘋狂理查,真心推薦!   元素週期表是引導我們了解複雜世界和宇宙的地圖,   每一格週期表都包含著無數動人的豐富故事,   更是數百年來人類在發展及科技應用上最真實的紀錄!   它不只

是存在於實驗室或課本中,也正在影響著我們的生活。   讓我們從今天開始,一起探索「原子」和「元素」吧!   【什麼是元素?】它是萬事萬物的基礎與根本,不只地球,整個宇宙都由元素組成!   【什麼是化學?】它是一門探討「變化」的科學,是讓我們看清這個多變世界的專屬導航!   【什麼是元素週期表?】它是連結科技過去與未來的地圖,同時也是全世界科學家的光榮印記。   誰說化學只有難背到爆炸的元素週期表?跟難解到細胞都死光的化學算式?   本書將最基本的元素/原子的階段與現代跨領域科學緊密地連結在一起,   不僅顛覆你的化學學習經驗與認知,更能讓你明白化學現象背後的科學原理,   對世界與萬物多一

分理解,成功建構出專屬於你自己的化學觀!   為了瞭解元素的起源,本書從觀察星星作為開端,   把各個元素的功能與日常生活的交集,自然地融入書的脈絡中,   輔以視覺化圖素為主的第二部分,可滿足讀完第一部分後所產生的好奇心,   將元素的故事及科學多樣化的領域,寫成讓人容易閱讀的文字,   即使不懂化學,也能毫無負擔的理解每一個化學變化的過程!   ◎在這本書中你可以得到珍貴的回饋:   ‧建立起不用背也能完整理解118個元素的演進原理   ‧建立起對元素有更強大的認同感與好奇心   ‧將本書中提到的概念,無縫銜接與運用到實際生活中   ‧從此與化學相看兩不厭,帶給你免於恐懼的自由   ‧

克服學習化學的無感與無力   ‧即使在理解這個世界的道路上走偏,也能找到自我修正的方法   ◎本書適用對象   ‧希望能幫到自己/孩子/學生,能有好成績的人   ‧希望再也不害怕化學這個科目的人   ‧喜歡學習科普知識的人,不拘年齡大小、不管現在幾歲  本書特色   特色1:入門化學首選!從「原子」、「元素」「宇宙」的概念出發,完整理解週期表形成的過程。   特色2:故事趣聞兼備!詳述元素相關的歷史故事和發現趣聞,讓讀者能在閱讀中得到更多的樂趣。   特色3:全彩解構元素!影響我們的生活的118個元素週期表,以百科方式呈現能隨查隨看。   特色4:典藏海報附贈!獨家附贈「週期表發展史典藏

海報」,讓你一次看懂元素週期表的發展史。 本書好評推薦   「你有沒有好奇過元素週期表為什麼要排成這種不整齊的形狀?這些元素為什麼叫這個名字?   它們之間有什麼相似之處呢?讀完這本書可以讓你不再只是會背元素週期表的口訣!」──阿簡生物筆記/ 阿簡老師     「週期表是外星智慧文明也必須理解的知識。」──國立臺灣大學化學系名譽教授/陳竹亭   「從太空到地球,從生活到科學,從過去到未來,   讀完這本書,你會對這個世界有不同的視野,你會得到一雙科學之眼。」──KOL人氣教師/ 瘋狂理查  

靜電紡絲—循環熱壓法製備PVDF膜之多態結晶相分析

為了解決氟分子量的問題,作者蘇柏諺 這樣論述:

本研究先將聚偏二氟乙烯(PVDF)以靜電紡絲之製程產生一定量的β相,然後再使用循環熱壓的方式來探討其對於PVDF生成β相之影響及三相(α、β、γ)的相變化與熱穩定性。其中的重點在於循環熱壓法可否影響靜電紡絲PVDF的極性相(β、γ)之生成。本研究分成兩部分,第一部分先利用機械壓縮的方式來探討在何種壓力(50 ~ 500 MPa)的條件下最有利於靜電紡絲PVDF中極性相的生成;第二部分則沿用第一部分的最佳壓力(300 MPa)來對靜電紡絲PVDF進行循環熱壓的實驗。試片表面形貌由SEM觀察,而DSC與FTIR可以分別計算總結晶度(Xc)與個別的相含量(F(α)、F(β)、F(γ)),且總結晶度

與相含量相乘可得到單相結晶度(Xα、Xβ、Xγ)最後在使用XRD來推估試片的應變與晶粒大小。首先,第一部分中以機械壓力對電紡PVDF進行壓縮,由FTIR的計算結果發現在壓力為300MPa的條件下PVDF的F(β)由原本電紡的56.22 %上升到最高值66.94 %,因此後續循環熱壓便全部在壓力為300 MPa的固定壓力下進行。第二部分實驗中的SEM圖表現出在熱壓溫度大於100 oC時,試片會有較低的孔隙率。但是因為電紡PVDF初始孔隙較多,因此有機會出現空氣團聚而形成孔洞。從DSC計算的結晶性中可以發現所有試片均在熱壓溫度為140 oC時有最高的結晶性,表示PVDF在此溫度最容易生成穩定的結晶

型態,其中最高結晶度為試140 oC熱壓1循環(140-1)的58.74 %。此外,在FTIR中我們不只單純計算出各相的含量,我們必須將DSC計算的結晶度(Xc)與各別相含量(F(α)、F(β)及F(γ))相乘,從而得到真正的單相結晶度(Xα、Xβ及Xγ),以便更好觀察循環熱壓法對於電紡PVDF的影響。而其中試片160-1有最高的Xβ = 43.7 %,試片140-1有最高的Xα = 15.4 %以及第二高的Xβ = 43.3 %。另外,在熱壓溫度低於165 oC時Xβ會隨熱壓溫度增加而增加。由此可知在140 oC ~ 165 oC時我們可以此為基礎來增加更多的β相結晶度。然而,本研究中的循環

熱壓法的Xβ與Xc會隨著熱壓的循環次數增加而急遽減少,就像是在4循環實驗中熱壓溫度高於140 oC時的各相結晶性皆不超過15 %,在8循環中更是不超過10 %。在DSC與FTIR的資料整合中,我們還可以整理出在電紡PVDF的熱壓製程後對各相熱穩定性的影響。從試片165-2與170-2的DSC圖中可以發現γ相的吸熱峰值最低點為172.69 oC,也是本研究中發現的γ相存在的最低熔點。另外,在試片165-8中觀察到兩個吸熱峰(174.87 oC及176.37 oC),再加上此試片中的β相結晶度大於α相結晶度,推斷β相在此條件下的熱穩定性是大於α相的,所以174.87 oC為β相的最高熔點。再由XR

D的分析結果中我們得知α相的應變一直高於β相,並且隨著循環次數增加而略為增加,符合文獻資料中提到的β相可以由受應力影響的α相變化而來。雖然電紡PVDF的結晶度會隨熱壓溫度及循環次數增加而降低,而由Scherrer’s 方程式估算的晶粒大小中顯示各相的平均晶粒大小會隨著熱壓的溫度及循環次數提高而增加。綜上所述,相較於原始的電紡纖維膜,循環熱壓製程可以有效增加試片的密度以及降低試片的缺陷。當熱壓溫度低於或等於140 oC時,熱壓循環次數的增加亦同時增加Xc與Xβ;而當熱壓溫度高於140 oC時會增加高分子鏈的活動性從而使Xc與Xβ呈現相反的趨勢。在140 oC及160 oC的1循環熱壓條件下可得到

最佳的Xβ為43.5 %,因為此溫度最接近PVDF的再結晶溫度。為獲得大晶粒與高結晶度的β相,熱壓溫度應該要低於 165 oC且低於4次循環;而大晶粒與高結晶度的γ相熱壓溫度則是要大於160 oC且循環約2 ~ 4次。