petg 膜的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列問答集和資訊懶人包

petg 膜的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦魏家瑞 等 編著寫的 熱塑性聚酯及其應用 可以從中找到所需的評價。

逢甲大學 環境工程與科學學系 陳志成所指導 洪嘉蓮的 不同廢塑膠回收再利用於3D列印材料之開發應用與分析研究 (2021),提出petg 膜關鍵因素是什麼,來自於廢塑膠、ABS、PLA、HIPS、3D列印、資源循環。

而第二篇論文臺北醫學大學 醫學科學研究所碩士班 張榮善所指導 曾元的 以片狀細胞工程製備心肌與腿肌細胞層片作為心肌重建用組織物之可行性 (2021),提出因為有 心肌重建、再生醫療、細胞治療、片狀細胞工程的重點而找出了 petg 膜的解答。

接下來讓我們看這些論文和書籍都說些什麼吧:

除了petg 膜,大家也想知道這些:

熱塑性聚酯及其應用

為了解決petg 膜的問題,作者魏家瑞 等 編著 這樣論述:

熱塑性聚酯是近幾年發展迅速的一個樹脂品種。本書簡要介紹了PET的生產,重點介紹了PET的結構、性能及其在不同制品中的應用。最後介紹了一些新型聚酯產品(PBT、PTT、PCT、PEN)的性能與應用及熱塑性聚酯生產與使用中的安全與環保要求。本書可供從事熱塑性聚酯生產及聚酯產品生產的技術人員使用。 第1章 緒言 1.1 熱塑性聚酯的發展歷史 1.2 熱塑性聚酯的特性 1.2.1 結構特點 1.2.2 性能 1.3 熱塑性聚酯的種類及應用 1.3.1 聚對苯二甲酸乙二醇酯 1.3.2 聚對苯二甲酸丁二醇酯 1.3.3 聚對苯二甲酸丙二醇酯 1.3.4

聚對苯二甲酸1,4.環己烷二甲醇酯 1.3.5 聚2,6.(�奈)二甲酸乙二醇酯 1.3.6 聚酯新品種 參考文獻 第2章 PET的制造 2.1 引言 2.2 原料和催化劑 2.2.1 對苯二甲酸二甲酯 2.2.2 對苯二甲酸 2.2.3 間苯二甲酸 2.2.4 乙二醇 2.2.5 乙二醇銻、醋酸銻和三氧化二銻 2.3 聚合化學反應原理 2.3.1 酯交換反應機理 2.3.2 酯化反應機理 2.3.3 縮聚反應機理 2.3.4 聚酯合成中的副反應 2.4 聚合生產工藝與設備 2.4.1 熔融縮聚過程與設備 2.4.2 固相縮聚過程與

設備 2.4.3 聚酯工藝成套技術國產化 2.5 切粒與包裝 2.5.1 切粒工藝 2.5.2 切片的儲存和包裝 2.6 產品質量標準與控制 2.6.1 質量標準 2.6.2 最終產品質量的控制 2.7 產品指標分析與檢驗 2.7.1 特性黏度的測定 2.7.2 熔點的測定 2.7.3 二甘醇含量的測定 2.7.4 端羧基含量的測定 2.7.5 色度的測定 2.7.6 凝集粒子的測定 2.7.7 水分的測定 2.7.8 粉末和異狀切片含量的測定 2.7.9 灰分的測定 2.7.10 鐵含量的測定 2.8 生產技術的新進展

2.8.1 生產裝備和工藝 2.8.2 新型聚酯催化劑 2.8.3 添加劑 2.8.4 納米改性 參考文獻 第3章 PET的結構、性能及縴維應用 3.1 引言 3.2 結構與性能及其表征 3.2.1 分子量及其分布 3.2.2 熔體的流變行為 3.2.3 熱性能與熱穩定性 3.2.4 結晶和取向 3.3 共聚改性及應用 3.3.1 添加剛性組分的共聚酯品種 3.3.2 添加柔性組分的共聚酯品種 3.4 共混改性及應用 3.4.1 PET/PE共混改性 3.4.2 PET/PP共混改性 3.4.3 PET/PEN共混改性 3.4.4

PET/PBT共混改性 3.4.5 PET/PA共混改性 3.4.6 PET/PC共混改性 3.4.7 其他一些共混改性 3.5 PET的縴維應用 3.5.1 滌綸縴維的分類 3.5.2 滌綸縴維的生產 3.5.3 滌綸縴維的性能 3.5.4 滌綸縴維的改性 3.5.5 滌綸縴維的應用 參考文獻 第4章 PET的薄膜應用 4.1 引言 4.1.1 流延PET(APET) 4.1.2 吹塑PET 4.1.3 平面雙向拉伸PET(BOPET) 4.2 BOPET對原料的要求 4.2.1 抗粘母粒切片 4.2.2 基料 4.2.3 其

他功能性母粒 4.3 BOPET加工原理 4.3.1 擠出塑化及流變 4.3.2 結晶 4.3.3 取向 4.3.4 降解及回用 4.4 BOPET生產工藝 4.4.1 原料切片準備 4.4.2 熔融擠出 4.4.3 鑄片 4.4.4 縱向拉伸 4.4.5 橫向拉伸 4.4.6 薄膜後整理 4.5 BOPET生產設備 4.5.1 原料切片的分篩與輸送 4.5.2 金屬分離裝置 4.5.3 原料切片的配料及混合 4.5.4 切片干燥設備 4.5.5 擠出系統 4.5.6 鑄片系統 4.5.7 縱向拉伸設備 4.5.8

橫向拉伸設備 4.5.9 牽引收卷系統 4.5.10 分切機組 4.5.11 廢料回收 4.5.12 測厚系統 4.6 BOPET生產線的發展 4.6.1 直接拉膜工藝技術 4.6.2 大容量BOPET生產線 4.6.3 同步拉伸技術工業化 4.6.4 配套裝置新技術的應用 4.7 BOPET薄膜的性能 4.7.1 力學性能 4.7.2 光學性能 4.7.3 表面性能 4.7.4 電性能 4.7.5 化學穩定性 4.8 BOPET薄膜的改性 4.8.1 原料化學改性 4.8.2 表面處理改性 4.9 BOPET薄膜的應用

4.9.1 磁記錄帶基 4.9.2 電工絕緣膜 4.9.3 金屬化薄膜 4.9.4 包裝薄膜 4.9.5 繪圖薄膜 4.9.6 脫模用BOPET 4.9.7 其他應用 4.10 行業狀況 參考文獻 第5章 PET的瓶、片材、塑鋼帶及工程塑料應用 5.1 引言 5.2 瓶用PET 5.2.1 聚酯瓶對原料的要求 5.2.2 聚酯瓶加工原理與生產工藝 5.2.3 聚酯瓶性能 5.2.4 聚酯瓶應用 5.2.5 聚酯啤酒瓶 5.2.6 瓶用聚酯行業狀況 5.3 APET片材 5.3.1 APET片材對原料的要求 5.3.2 APET片

材加工原理與生產工藝 5.3.3 APET片材性能 5.3.4 APET片材應用 5.3.5 其他聚酯片材 5.4 PET塑鋼帶 5.4.1 PET塑鋼帶對原料的要求 5.4.2 PET塑鋼帶加工原理與生產工藝 5.4.3 PET塑鋼帶性能 5.4.4 PET塑鋼帶應用 5.4.5 PET土工格柵應用 5.5 PET工程塑料 5.5.1 結晶改性 5.5.2 增韌改性 5.5.3 增強改性 5.5.4 擴鏈增黏 5.5.5 阻燃改性 5.5.6 PET工程塑料 參考文獻 第6章 PBT的制造、性能及應用 6.1 引言 6.2 P

BT合成原理 6.2.1 酯化反應機理 6.2.2 縮聚反應機理 6.3 PBT工業化生產技術 6.3.1 原料及催化劑 6.3.2 PBT工藝路線簡介 6.3.3 連續直接酯化法工藝簡介 6.4 PBT的結構與性能 6.4.1 PBT的化學結構 6.4.2 PBT的物理結構 6.4.3 PBT的力學性能 6.5 PBT的共聚改性 6.6 PBT的共混改性 6.6.1 玻縴增強改性 6.6.2 無機礦物質填充改性 6.6.3 PBT/PET共混改性 6.6.4 PBT增韌改性 6.7 PBT生產狀況及應用 6.7.1 全球PBT樹脂

生產狀況 6.7.2 全球PBT需求 6.7.3 國內外PBT產品的主要牌號及應用 6.7.4 PBT加工工藝 6.8 PBT技術新進展 參考文獻 第7章 PTT的制造、性能及應用 7.1 引言 7.2 主要原料及其制備 7.2.1 丙烯醛水合法 7.2.2 環氧乙烷甲 化法 7.2.3 生物發酵法 7.3 PTT聚合化學反應原理 7.3.1 酯化反應 7.3.2 酯交換反應 7.3.3 縮聚反應 7.3.4 醚化反應 7.3.5 環化反應 7.3.6 熱降解與熱氧降解反應 7.4 PTT聚合生產工藝 7.4.1 間歇法生產PT

T 7.4.2 連續法生產PTT 7.4.3 PTT的固相縮聚 7.4.4 產品指標與分析檢驗 7.5 PTT的結構和性能 7.5.1 化學結構 7.5.2 物理結構 7.5.3 化學性能 7.5.4 物理性能 7.5.5 流變性能 7.6 PTT的共聚改性 7.7 PTT的共混改性 7.8 PTT的縴維應用 7.8.1 PTT縴維性能 7.8.2 PTT縴維加工 7.8.3 PTT縴維應用 7.9 PTT的塑料應用 參考文獻 第8章 PCT的制造、性能及應用 8.1 引言 8.2 原料與催化劑 8.2.1 CHDM基本性能

8.2.2 CHDM的制備 8.2.3 催化劑 8.3 PCT的制備過程及設備 8.3.1 PCT的制備過程 8.3.2 PCT的生產設備 8.4 PCT的結構性能 8.4.1 CHDM異構體結構對PCT性能的影響 8.4.2 PCT的力學性能和熱性能 8.4.3 PCT的耐化學品性和耐水解性 8.4.4 PCT的結晶性能 8.4.5 PCT的加工性能 8.5 PCT的共縮聚改性 8.5.1 PCTA共聚酯 8.5.2 PCTG共聚酯 8.5.3 PETG共聚酯 8.5.4 PCTN共聚酯 8.5.5 幾種改性共聚酯性能比較 8.6

PCT的共混改性 8.6.1 PCT與其他樹脂的共混 8.6.2 阻燃PCT的共混改性 8.6.3 抗沖擊PCT的共混改性 8.6.4 PCT的其他共混改性 8.6.5 PCT的添加劑共混改性 8.6.6 PCT共混改性產品的應用 8.7 PCT的應用 8.7.1 PCT樹脂 8.7.2 PCT縴維 8.8 PCT共聚酯的應用 8.8.1 PCTA共聚酯的應用 8.8.2 PCTG共聚酯的應用 8.8.3 PETG共聚酯的應用 8.9 新型聚酯PCCD 參考文獻 第9章 PEN的制造、性能及應用 9.1 引言 9.2 原料和催化劑

9.2.1 原料 9.2.2 催化劑 9.3 聚合化學反應原理 9.4 聚合生產工藝 9.4.1 低聚物和預聚體制備 9.4.2 熔融縮聚 9.4.3 固態縮聚 9.5 PEN的結構與性能 9.5.1 分子量及其分布 9.5.2 熔體的流變行為 9.5.3 熱性能與熱穩定性 9.5.4 PEN形態 9.5.5 化學穩定性 9.5.6 力學性能 9.5.7 光學性能 9.5.8 氣體阻隔性能 9.5.9 電性能 9.6 PEN的應用 9.6.1 薄膜 9.6.2 縴維 9.6.3 飲料瓶 9.6.4 化妝品與藥品瓶 9

.7 PEN的共聚和共混改性 9.8 PEN共聚酯和共混物的應用 9.9 生產技術的新進展 參考文獻 第10章 聚酯樹脂新品種 10.1 引言 10.2 聚乳酸 10.2.1 合成 10.2.2 性質 10.2.3 聚乳酸切片牌號和加工成型 10.2.4 降解性 10.2.5 應用與展望 10.3 聚己內酯 10.3.1 合成 10.3.2 性質 10.3.3 降解性 10.3.4 應用 10.4 聚丁二酸丁二醇酯 10.4.1 合成 10.4.2 性質 10.4.3 改性 10.4.4 應用 10.5 聚羥基脂肪酸酯

10.5.1 合成 10.5.2 性質 10.5.3 改性 10.5.4 應用 10.6 聚碳酸亞丙酯 10.6.1 合成 10.6.2 性質 10.6.3 應用 10.7 聚乙醇酸 10.7.1 合成 10.7.2 性質 10.7.3 應用 10.8 液晶聚酯 10.8.1 分子結構設計 10.8.2 合成方法 10.8.3 結構性能表征 10.8.4 共混改性 10.8.5 應用 參考文獻 第11章 熱塑性聚酯生產和使用的安全與環保 11.1 PET生產和使用的安全與環保 11.1.1 PET的原料毒性及使用安全 1

1.1.2 PET的毒性及使用安全 11.1.3 PET生產中的安全與防護 11.1.4 PET生產產生的污染及其治理 11.1.5 PET及其復合材料的循環利用 11.2 PBT生產和使用的安全與環保 11.2.1 PBT的原料毒性及使用安全 11.2.2 PBT的毒性及使用安全 11.2.3 PBT生產和加工中的安全與防護 11.2.4 PBT生產產生的污染及其治理 11.2.5 PBT及其復合材料的循環利用 11.3 PTT生產和使用的安全與環保 11.3.1 PTT的原料毒性及使用安全 11.3.2 PTT的毒性及使用安全 11.3.3

PTT生產和加工中的安全與防護 11.4 PEN生產和使用的安全與環保 11.4.1 PEN的原料毒性及使用安全 11.4.2 PEN的毒性及使用安全 11.4.3 PEN生產和加工中的安全與防護 11.4.4 PEN生產產生的污染及其治理 11.4.5 PEN及其復合材料的循環利用 11.5 聚乳酸生產和使用的安全與環保 11.5.1 聚乳酸生產和加工中的安全與防護 11.5.2 回收料和邊角料的循環利用 附錄 附錄一 熱塑性聚酯牌號表 附錄二 熱塑性聚酯主要加工應用廠商與關鍵加工設備制造商 附錄三 熱塑性聚酯用添加劑、催化劑的生產商

不同廢塑膠回收再利用於3D列印材料之開發應用與分析研究

為了解決petg 膜的問題,作者洪嘉蓮 這樣論述:

塑膠具有質量輕、耐用且製造成本低之優點,被大量廣泛使用,雖增加生活之便利性,但產生之大量廢棄物與海洋污染問題嚴重,因此塑膠之減量及回收再利用更加重要。廢塑膠回收可依材質分為PET、HDPE、PVC、LDPE、PP及PS六大類外,其餘塑膠皆歸屬於第七類(Others),此類塑膠之回收處理管道較少,種類繁雜且複雜度高,往往被以混合方式焚化處理,不但造成焚化廠操作困難且浪費資源。因此本研究探討PLA、ABS、HIPS三種常見廢塑膠回收製成3D列印線材之方法,並測試不同列印控制參數(列印溫度、層厚度、填充形式、填充密度)對3D列印產品之影響,建立最佳3D列印操作條件,以及分析不同塑膠線材與3D列印產

品之材料特性。實驗結果指出,影響3D列印產品機械強度的主要因素為填充密度,其餘參數之影響程度依序為層厚度、列印溫度及填充形式,PLA線材之3D列印產品具有最大拉伸強度與彎曲強度,其次為ABS與HIPS。回收廢塑膠自製線材與市售線材之3D列印產品成分與品質無顯著差異,但PLA材質較容易因回收熱處理而產生化學結構變化,ABS及HIPS之熱穩定性較佳。研究結果顯示將廢塑膠回收再製為3D列印材料應具有可行性,可取代市售線材,創造塑膠回收再利用之高值化產品與多元應用途徑。

以片狀細胞工程製備心肌與腿肌細胞層片作為心肌重建用組織物之可行性

為了解決petg 膜的問題,作者曾元 這樣論述:

缺血性心臟病是全球第一大死因,然目前臨床治療手段,如輔助療法或心臟移植療效有限。且受限於技術,刺激難以實現自體再生,故近來以人為給予細胞的細胞療法成為心肌再生的主要研究方向。為改善注射細胞懸浮液的低效,針對提升移植細胞的貼附率與細胞活性,片狀細胞工程成為心肌細胞治療的新興發展方向。最後儘管幹細胞有更高的再生潛能,但較本研究選用之肌肉細胞,幹細胞尤有較高的安全疑慮。基於以上,本研究認為分化末端之功能性細胞的臨床實用性更高,因而探討利用片狀肌肉細胞於失能心肌組織所具之再生潛能。在實驗上,本研究開發有利細胞生長且具脫著功能的培養小柸以培養片狀細胞,首先以500 mTorr的二氧化碳進行低壓電漿反應

45分鐘後再接枝1.0 M聚麩胺酸以製備出適合培養片狀肌肉細胞之載體。接著以水接觸角量測(Contact angle)、表面化學分析電子光譜(ESCA)、掃描探針顯微鏡(AFM)等證實培養小柸具有與設計符合的功能;且由結果可知功能性培養小柸表面軟硬度由878.6MPa降至1.5MPa。最後本研究將初代心肌及腿肌細胞培養成片狀細胞,並成功脫著;脫著後發現仍具細胞活性,並觀察到疊層後存活週期可達三天。缺血性心臟病模式動物選用紐西蘭大白兔,並以超音波及心電圖確認模式動物的建立,同時也成功培養自體腿肌。未來將進一步探討片狀腿肌細胞對兔模式動物心功能修復之療效,讓此法對於心肌重建有所貢獻。