fe分子量的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列問答集和資訊懶人包

fe分子量的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦化學工業職業技能鑒定指導中心寫的 世界技能大賽賽項指導書:化學實驗室技術 和佐藤健太郎的 改變世界史的12種新材料:從鐵器時代到未來超材料,從物質科學觀點看歷史如何轉變都 可以從中找到所需的評價。

這兩本書分別來自化學工業 和麥田所出版 。

國立陽明交通大學 材料科學與工程學系所 柯富祥所指導 杜博瑋的 磁敏釋放控制微膠囊並應用於金屬離子螢光感測 (2021),提出fe分子量關鍵因素是什麼,來自於微膠囊、雙乳化、釋放控制、熒光感測、磁性奈米顆粒。

而第二篇論文國立雲林科技大學 機械工程系 張元震所指導 黃彬勝的 結合Breath Figure 週期性液滴透鏡之奈米雷射直寫加工技術 (2021),提出因為有 浸塗法、Breath Figure、甘油、液體透鏡、奈米結構的重點而找出了 fe分子量的解答。

接下來讓我們看這些論文和書籍都說些什麼吧:

除了fe分子量,大家也想知道這些:

世界技能大賽賽項指導書:化學實驗室技術

為了解決fe分子量的問題,作者化學工業職業技能鑒定指導中心 這樣論述:

《世界技能大賽賽項指導書化學實驗室技術》包含6個部分:世界技能大賽概況及職業崗位要求、專業理論知識、實驗操作技能訓練、對物質進行分析與表徵、專業綜合應用能力和綜合測試。介紹了世界技能大賽的概況及化學實驗室技術賽項要求選手必須掌握的崗位能力,系統地闡述了參賽選手必須掌握的基本理論知識和操作能力,並附有該賽項的世賽真題、參賽必備的英文詞彙等,各章節後均有綜合能力測試題,書稿最後單獨列出綜合測試題,訓練參賽選手的基礎理論、實操能力和綜合應用能力。 本書是一本理論性、適應性強的專業培訓教材,是面向世界技能大賽“化學實驗室技術”賽項參賽師生的培訓教材,也可供國內其他化學類大賽參賽師生參考。

第一部分世界技能大賽概況及職業崗位要求/1 1世界技能大賽概況2 1.1世界技能大賽組織機構及性質2 1.1.1世界技能組織2 1.1.2發展歷史2 1.2世界技能大賽項目簡介4 1.2.1專案分類4 1.2.2大賽規則6 1.3以化學為基礎的世界技能大賽項目簡介6 1.4中國近幾屆參賽情況6 2化學實驗室技術崗位能力分析7 2.1崗位能力專業定位7 2.2崗位能力評價與考核7 2.2.1崗位能力描述7 2.2.2選手應當具備的能力7 第二部分專業理論知識/12 3無機化學基礎知識13 3.1金屬元素性質13 3.1.1鹼金屬元素13 3.1.2鹼土金屬元素14 3.1.3鐵、鋁

、銅、銀的性質15 3.1.4鉛、砷、鉻、鎘的性質21 3.2非金屬元素性質27 3.2.1氧、氮、硫、磷、碳的性質27 3.2.2鹵素的性質36 3.2.3溶液的濃度41 3.3酸與堿的性質45 3.3.1酸的性質及應用45 3.3.2堿的性質及應用50 3.4化學反應53 3.4.1化學反應的類別53 3.4.2化學反應速率及平衡54 3.5化學溶液59 3.5.1化學試劑的分類59 3.5.2電解質溶液62 3.5.3緩衝溶液67 3.6無機物質製備69 3.6.1製備原理69 3.6.2製備方案70 3.7無機化學發展趨勢71 綜合能力測試73 4有機化學基礎知識75 4.1重要有機

物質的性質75 4.1.1烴的性質75 4.1.2醇、醚、酚的性質83 4.1.3醛、酮、羧酸、酯的性質89 4.1.4含氮化合物的性質97 4.2有機物質的製備100 4.2.1合成路徑100 4.2.2反應裝置的選擇101 4.2.3有機物的轉化率、選擇性和產率105 4.3有機化合物的純化與分離技術106 4.3.1萃取106 4.3.2水蒸氣蒸餾108 4.3.3減壓蒸餾109 4.3.4結晶和重結晶111 4.4有機反應中產生廢氣的處理裝置114 4.4.1吸收114 4.4.2吸附114 4.5有機化學發展趨勢114 綜合能力測試115 5分析化學基礎知識118 5.1分析化學概

要118 5.2滴定分析法119 5.2.1滴定分析專用術語119 5.2.2滴定分析對化學反應的要求120 5.2.3滴定分析的計算120 5.2.4標準滴定溶液的配製與標定127 5.3資料處理130 5.3.1資料統計130 5.3.2資料分析133 5.4酸堿滴定法136 5.4.1溶液酸鹼度的計算136 5.4.2酸堿指示劑137 5.4.3滴定條件的選擇140 5.4.4案例分析145 5.5氧化還原滴定法149 5.5.1氧化還原反應進行的程度與反應速率149 5.5.2氧化還原指示劑150 5.5.3高錳酸鉀法及案例分析151 5.5.4重鉻酸鉀法及案例分析155 5.5.5碘

量法及案例分析160 5.6配位滴定法164 5.6.1EDTA及其配合物164 5.6.2穩定常數165 5.6.3金屬指示劑166 5.6.4酸效應曲線及其應用169 5.6.5案例分析175 5.7沉澱滴定法178 5.7.1沉澱滴定的原理178 5.7.2莫爾法179 5.7.3福爾哈德法181 5.7.4法揚司法182 5.7.5案例分析183 5.8電位分析法186 5.8.1原電池和電解池186 5.8.2標準電極電位和條件電位186 5.8.3離子選擇性電極187 5.8.4電位分析方法190 5.8.5案例分析192 5.9紫外-可見分光光度法195 5.9.1光吸收定律19

5 5.9.2紫外-可見分光光度法200 5.9.3紫外-可見分光光度計204 5.9.4案例分析206 5.10色譜分析法207 5.10.1色譜法原理207 5.10.2氣相色譜法209 5.10.3氣相色譜案例分析211 5.10.4高效液相色譜法215 5.10.5液相色譜案例分析221 5.10.6薄層色譜法224 5.10.7薄層層析案例分析227 5.11物理性質測定228 5.11.1凝固點228 5.11.2熔點228 5.11.3密度229 5.11.4折射率231 5.11.5比旋光度232 綜合能力測試234 第三部分實驗操作技能訓練/237 6化學實驗室基本操作技能

訓練238 6.1化學類實驗玻璃儀器的選用及管理238 6.1.1一般玻璃儀器的管理238 6.1.2計量玻璃儀器的選用與校準241 6.1.3分析基本操作技能訓練247 6.2化學試劑的配製與處置252 6.2.1化學試劑的配製252 6.2.2化學品的處置260 6.3化學分析操作技能訓練270 6.3.1分析天平的使用及維護270 6.3.2取樣及樣品準備273 6.3.3滴定終點的控制操作訓練284 6.4儀器分析操作技能訓練286 6.4.1電極的正確使用286 6.4.2分光光度計的基本操作288 6.4.3氣相色譜儀的使用與維護290 7分析測試技術操作能力訓練292 7.10

.1mol/LNaOH溶液配製與標定(GB/T601—2016)292 7.2燒鹼中NaOH和Na2CO3的含量測定293 7.3水中硬度測定(GB7477—87)294 7.4水泥中Fe、Ca、Mg含量測定296 7.5碘標準溶液的配製與標定(GB/T601—2016)298 7.6碘量法測定維生素C含量(GB14754—2010)299 7.7水中CODMn測定(GB11892—89)300 7.8水中CODCr測定(HJ828—2017)302 7.9鐵礦石中鐵含量測定304 7.10工業燒鹼中NaCl含量測定(銀量法)306 7.11煤中全硫含量測定(GB/T214—2007)307

7.12用電位法測定溶液中的pH值308 7.13重鉻酸鉀法電位滴定硫酸亞鐵銨溶液中亞鐵含量309 7.14鄰二氮菲分光光度法測定微量鐵310 7.15用紫外分光光度法對有機物進行定性與定量分析(硝基苯酚、硝基苯)313 7.16分光光度法測定維生素C+維生素E混合樣314 7.17毛細管柱氣相色譜法分析白酒中主要成分318 7.18液相色譜法測定布洛芬膠囊中主要成分含量320 8物質的合成及條件優化322 8.1氯化氫乙醇溶液的製備322 8.2乙酸正丁酯的製備323 8.34-叔丁基鄰二甲苯的合成324 8.4苯乙酮的製備325 8.5從橙皮中提取檸檬油326 8.6四氫呋喃水分去除32

7 8.7溴乙烷的製備328 8.8乙醯水楊酸的製備329 8.9對氨基苯磺醯胺的製備331 綜合能力測試332 第四部分對物質進行分析與表徵/337 9波譜分析技術338 9.1紫外光譜338 9.1.1紫外光譜基本原理338 9.1.2各類化合物的紫外吸收光譜341 9.1.3紫外光譜的應用348 9.2紅外光譜349 9.2.1紅外光譜的基本原理350 9.2.2紅外光譜儀及樣品製備技術353 9.2.3紅外吸收光譜與分子結構的關係358 9.2.4紅外譜圖解析案例361 9.3核磁共振波譜363 9.3.1核磁共振的基本原理364 9.3.2解析譜圖369 9.4質譜370 9.4.

1質譜的基本知識370 9.4.2常見各類化合物的質譜373 9.4.3有機質譜的解析及應用377 9.5物質表徵的綜合解析379 綜合能力測試381 第五部分專業綜合應用能力/383 10實驗室組織與管理384 10.1危險化學品的管理384 10.1.1危險化學品的分類384 10.1.2危險化學品的管理385 10.2化學實驗室廢物處置及回收利用386 10.2.1廢氣處置及回收利用386 10.2.2廢液處置及回收利用386 10.2.3廢固物處置及回收利用388 10.3化學實驗室防火、防爆389 10.3.1化學實驗室易燃、易爆物質分類389 10.3.2化學實驗室防火防爆措施3

93 10.3.3化學實驗室火災的撲救394 10.4化學實驗室事故緊急處置395 10.4.1化學實驗室事故緊急應變措施395 10.4.2醫療急救快速處理步驟395 10.4.3緊急滅火395 10.4.4化學藥品濺出處置396 10.5HSE知識介紹396 10.5.1安全知識397 10.5.2CLP規則的H聲明398 10.5.3CLP規則的P聲明403 綜合能力測試408 11專業文獻的使用411 11.1專業文獻查找的方法411 11.1.1文獻的分類411 11.1.2一般性科技文獻查閱的步驟411 11.2化學類文獻查閱412 11.2.1化學文獻412 11.2.2中國知

網檢索方法412 11.2.3常用的化學資料庫資源415 11.2.4有機合成類文獻查閱415 綜合能力測試417 12化學類專業英語應用能力418 12.1一般性交流常識418 12.2專業英語訓練模組419 12.2.1化學類專業英語閱讀技巧419 12.2.2分析測試類文獻閱讀421 12.2.3有機合成類文獻閱讀425 12.2.4化學類實驗設備的使用及維護文獻閱讀429 12.2.5化學試劑的選用與配製文獻閱讀429 12.2.6化學實驗室技術專案的英文寫作專項訓練431 第六部分綜合試題/435 13化學基礎知識綜合測試題436 14第45屆世界技能大賽試題456 附錄475

附錄1常見化學實驗室技術術語及專業名詞漢英對照表475 附錄2國際通用化學類實驗技術符號483 附錄3常用緩衝溶液的配製485 附錄4常用基準物質的乾燥條件和應用486 附錄5常用酸堿指示劑及其配製方法487 附錄6非危險品化學試劑的分類儲存489 附錄7危險品化學試劑的分類儲存490 參考文獻492 本教材由化學工業職業技能鑒定指導中心牽頭,組織第45屆世界技能大賽化學實驗室技術賽項中國專家組及教練組成員,以世界技能大賽化學實驗室技術賽項技術標準為依據,結合多年化工行業職業教育經驗編寫而成。 本教材立足於知識夠用、理實一體,促進大賽成果轉化的思路,結合歐洲對化學實驗室

技術的職業要求,突出職業能力和職業素養,體現了現代職業教育的特色。全書除第一部分介紹世界技能大賽的概況及職業要求外,其他章節緊扣化學實驗室技術競賽專案的技術說明,涵蓋了化學實驗室工作人員應當具備的基礎知識與應用、職業操作技能、專業綜合素質、參加世界技能大賽的專項能力等訓練內容。教材基礎知識針對性強、技能訓練操作性強,對準備參加世界技能大賽化學實驗室技術賽項的教練、學員有一定的指導作用。 本教材結合現代世界職業教育的理念,將HSE職業理論嵌入到各教學及訓練環節中,對化學類實驗室工作人員有一定的職業指導作用。教材可滿足應用化學、分析測試、工藝試驗等專業各層次學生作為教材與職業指導用書的需要,也可

以作為從事相關工作的人員提高化學實驗室技術和管理能力的參考用書。 本教材由沈磊(化學工業職業技能鑒定指導中心)、季劍波(徐州工業職業技術學院)主編,蔣邦彥(山東化工技師學院)、燕傳勇(徐州工業職業技術學院)任副主編,全書由沈磊、季劍波統稿。其中第一部分、第六部分由沈磊和張璿(化學工業職業技能鑒定指導中心)共同編寫,第二部分的無機化學基礎知識由徐榮華(南京化工技師學院)編寫、有機化學基礎知識由侯亞偉(上海資訊技術學校)編寫、分析化學基礎知識由楊明明(山東化工技師學院)和季劍波共同編寫,第三部分由蔣邦彥和燕傳勇共同編寫,第四部分由燕傳勇編寫,第五部分由謝茹勝(福建生物工程職業技術學院)編寫,附錄

及相關資料由季劍波編寫。全書由化學工業職業技能鑒定指導中心劉東方高級工程師主審。編者在此表示衷心感謝。 編者在編寫過程中由於專業資料收集不夠全面,書中難免有不當之處,懇請專家與讀者批評指正。 編者 2020.8

磁敏釋放控制微膠囊並應用於金屬離子螢光感測

為了解決fe分子量的問題,作者杜博瑋 這樣論述:

微膠囊化技術因其在材料科學中的結構和功能性提供眾多優點而近年來受到廣泛的 關注。超分子化學是一門關注分子間非共價鍵作用力的化學學科,從中延伸出了很多 重要的概念和研究方向,例如分子螢光光探針,其螢光特性由其自身的分子結構決定, 但也容易受到環境因素的影響。在該方向上,本論文進行了詳細的研究,解釋了微膠 囊化技術與超分子化學完美的平衡組合,使其具有更好的穩定性和新穎的應用。首先 我們導入超分子化學概念通過一鍋反應合成的芘基衍生物,2­((芘­1­亞甲基) 胺) 乙醇奈 米顆粒,和通過改質的磁性奈米顆粒用作觸發釋放元素通過雙乳化溶劑蒸發法包覆在 聚己內酯聚合物基質構建的微型膠囊中。用於檢測三價陽

離子的開關感測器通過新型 的螢光響應與磁場控制釋放機制被很好地整合在整個系統中,並且在外部震盪磁場下 可以有效地發生熱能與動能的轉換。(1) 通過一鍋法成功合成了具有聚集誘導光增強特性和三價陽離子感測能力的芘基衍 生物螢光探針。我們使用重結晶技術來提高該螢光探針化合物的純度,純度評估由螢 光光譜的半高寬的值確定。通過核磁共振光譜,紫外可見光光譜,螢光光譜和熱重分 析研究了選擇性螢光探針的特性。其聚集誘導光增強特性和對於三價陽離子 (鐵/鋁/鉻) 的選擇開關特性都表現完整且性能良好。在使用這種螢光探針作為核心材料被封裝在 微膠囊中之前,本節充分地研究了其基本特性,穩定的紫外可見光及螢光光譜的結果

是在溶劑 (乙腈) 和水 (100:900; 體積比) 的比例下進行的,強力的激發光在 505 nm,也 分別顯示出其對於三價鐵/鋁/鉻金屬陽離子優異的選擇性。(2) 為了成功通過外部震盪磁場觸發微膠囊的破裂,我們將利用共沉澱法合成並通過 檸檬酸修飾以達到避免團聚現象並提高其穩定性的磁性奈米顆粒嵌入聚合物基質中。 通過由動態光散射所測量到的粒徑分佈和界面電位以及掃描電子顯微鏡觀察到的圖 像,顯示出經過修飾的磁性奈米顆粒具有良好的分散特性和相對未修飾顆粒較小的粒 徑分佈。經過修飾的磁性奈米顆粒和選擇性熒光探針分子通過雙乳化結合溶劑蒸發法 成功封裝在微膠囊中,並通過光學顯微鏡,掃描電子顯微鏡,動

態光散射儀,熱重分i析儀,X 光散射儀,和核磁共振光譜儀對其表面形貌和特征進行了全面的研究。其結 果分別表明被修飾的磁性奈米顆粒和選擇性熒光探針確實有被微膠囊封裝在內,與此 同時,本節還深入討論了殼材料的高分子量的大小,雙乳化的內部水相濃度,以及在 分離微膠囊的離心過程中的離心速率的選擇,對合成微膠囊形貌以及包封效率的影響。 我們發現當聚合物外殼採用的分子量為 80,000 的聚己內酯時,所合成的微膠囊比其他 兩種較低分子量的顯示出更好的包覆效率和更加均勻的形狀,這主要是由於採用較高 分子量的高分子時,其油相在膠囊雙乳化狀態下的固化過程可以提供更好的穩定性。 此外,將溶解在乙腈中 10 mM

的熒光探針化合物作為內部水相的濃度與其他兩種濃度 (0.1 mM, 1 mM) 相比之下,也證明該濃度下所合成的微膠囊具有更好的均勻性和包覆 效率,因為較低濃度的內部水相會導致膠囊外殼內外滲透壓的不穩定。令人驚訝的是, 我們還發現在分離微膠囊的過程中,較高的離心速率會導致微膠囊的多孔性結構的產 生,這種現象可以通過調整較低的離心速率來消除。該策略同時也為未來開發新型多 孔性結構微膠囊的設計提供了一種新的途徑。在本節中,包覆了被修飾後的磁性奈米 顆粒和選擇性螢光探針的微膠囊的釋放行為和感測滴定分別以六十攝氏度的水浴加熱, 機械破壞,和超聲波粉碎的方式模擬其在磁場破裂的條件下進行,並且分別在不同狀

態下完美地測試了其結果。(3) 最後我們巧妙地設計了通過使用外部震盪磁場的方式來觸發芘基席夫鹼螢光 探針在微膠囊中的新型磁感應釋放機制。為了控制膠囊外殼的破裂,分散在乙腈/水 (900:100; 體積比) 中新合成的磁敏微膠囊通過直接感應加熱暴露在高頻磁場下。這些微 膠囊被成功觸發破裂釋放出所包覆的選擇性螢光探針,表現出優異的聚集誘導光增強 特性,和良好的選擇性開關螢光信號用於檢測三價金屬陽離子 (鐵/鋁/鉻)。被釋放的螢 光探針的檢測極限為:2.8602 × 10−6 M (三價鋁離子), 1.5744 × 10−6 M (三價鉻離子),和 1.8988 × 10−6 M (三價鐵離子)。

該感測器平台也表現出優異的精確度和再現性,如變 異係數所示 (三價鐵離子 ≤ 2.79%, 三價鉻離子 ≤ 2.79%, 三價鋁離子 ≤ 3.76%),各金屬離 子的回收率分別為:96.5­98.7% (三價鐵離子), 96.7­99.4% (三價鉻離子), 和 94.7­98.9% (三價鋁離子)。以上結果也充分說明了本文所述的控制釋放平台對於三價金屬陽離子 (鐵/鋁/鉻) 活性和實際樣品中的偵測,在未來環境監測甚至生物醫學方面的應用有一定 的價值和潛力。

改變世界史的12種新材料:從鐵器時代到未來超材料,從物質科學觀點看歷史如何轉變

為了解決fe分子量的問題,作者佐藤健太郎 這樣論述:

  科學與文明的化學反應、材料與歷史的物理變化 日本獲獎科普作家佐藤健太郎解析撰述 鐵、橡膠、膠原蛋白……等十二種材料 如何轉動時代之鑰、開啟改變歷史的關鍵時刻   從材料科學角度建構全球史! 本書介紹12種你最熟悉,卻未想過他有扭轉世界歷史能力的材料。 世界的變化快速,我們日常生活中的音樂載體即是一例,自戰後從唱片到CD登場後不久就讓出了寶座,至今由網路的串流及影片網站取代,急速消失。變化難以預測。作者認為世界如此快速變化,最重要的關鍵就是「材料」。自石器時代、青銅時代、鐵器時代至今,這些名詞證明了材料的出現是文明邁向新階段的關鍵。回到唱片的例子,最早的唱片是以蟲膠製成

,五○年代由於更加耐用便宜又易於量產的聚氯乙烯(PVC)唱片出現,使得流行樂的巨大市場成形。 推動歷史的材料有很多種,既有大量普及的材料,也有被競相爭奪的稀有材料,有自然和加工的材料,也有人工材料。本書選出其中十二種並介紹相關的歷史,希望能和讀者一窺材料才是打開時代之門的鑰匙。   ▌人人都愛黃金,但卻「不實用」 黃金是最為人渴望,也是集歷史於浪漫於一身的存在。黃金在牙醫治療或是電子上的用途都是很後期才被開發的,古代的黃金,如同希臘神話邁達斯國王點石成金故事所說本身毫無用處,主要是作為裝飾和貨幣,後者是最重要的用途。作者從神話切入,並介紹了黃金在日本的歷史,以及人類對黃金的追求,如淘金熱、西班

牙對印加帝國的征服,還有煉金術從現代化學的角度來看,要在燒瓶裡轉換元素是不可能的,但數千年的鍊金術發展中也發現了許多化學物質,磨練出基本化學實驗技術,化學進步後也才發現了黃金的新用途:導電。 作者也介紹了黃金的化學特性、作為貨幣的變化。今日的黃金已不再作為貨幣,但在人們心中仍是高價而保值的金屬,寄託著人類的想像。黃金卻造就了它吸引人目光的無限魅力,甚至成為計量「價值」的重要素材。   ▌從黏士到堅硬材料,陶器成為人類生活最重要的存在 陶瓷器的燒製是考古學者判斷文明的指標,也是自古便為世界各地人們常用,至今仍是生活裡被廣泛使用的材料。目前考古所知最早的燒製品是在中國湖南省出土,大約一萬八千年前的

土器。日本則是在冰河期結束時開始使用。各種形式的燒製品有助於水以及食物的儲存和調理,大幅提升人類的繁榮。 作者從化學變化來解釋為什麼黏土經過高溫能變得更加堅固耐久,並介紹了中國低溫燒製的陶藝技術(秦俑、長城磚塊)還有為了取得燃料過度砍伐森林對環境的影響,並從釉藥的進步再帶到白磁在中國和歐洲瓷器頂點梅森瓷器的起源,最後提及現代科學技術和陶瓷材料。伴隨人類超過萬年的陶瓷器,作為材料還隱藏著各式各樣的潛力。   ▌膠原蛋白不只留住青春,還在戰場上保你一命 經歷多次的冰河期以及必須跨越寒冷地域旅程的人類,在很長的時間裡唯一的防寒衣物是動物毛皮。毛皮要能使用必須經過加工,鞣製過的皮革具有柔軟度,能保溫且

輕盈,即便在有許多替代材料的今天依然很受歡迎,其祕密就在皮主要成分的膠原蛋白上。 作者從生物化學角度介紹膠原蛋白的特殊結構和重要性,膠原蛋白約占人體的三分之一,但和其他蛋白質的構造以及功能不同,主要是位於細胞外,發揮連結的作用,也是皮能維持柔軟彈性的原因,也是骨頭和肌腱的主要成分。骨頭是舊石器時代人類重要的硬質材料之一。蒙古帝國征服世界所使用的複合弓是在木製弓內側貼上動物骨頭或肌腱來加強彈性和硬度。貼合兩者的明膠、也是由膠原蛋白而來。除此之外,膠原蛋白也用在底片的塗料上。 今日由於對野生動物的保護意識和替代材料的開發,皮草皮革不再像以前那樣常見,底片也被數位相機取代。但膠原蛋白作為美容、醫療修

補,還有生物醫學植入材料受到矚目。若說由植物產生的材料中最重要的是纖維素,那麼動物材料裡最重要的就是膠原蛋白。   ▌運用最廣泛的金屬王者 鐵是材料之王。但鐵本身是柔軟的白色金屬,需要和其他金術製成合金才能擁有堅硬的優點,且容易鏽蝕,融點高達一五三五度,需要一定技術才能加工。鐵的優勢在於(和其他金屬比較下)易於取得。如果黃金的是稀少尊貴的代表,鐵就是能廉價大量生產的代表。 為什麼鐵的存在數量比其他金屬多?作者認為解答在核物理學中。人體由許多元素構成,包括碳、氧還有鐵等元素。這些元素是從星星而來。像太陽這樣的恆星內部超過一千萬度以上的高溫裡,核融合產生新的元素,我們的太陽中進行的是氫的融合,產生

了氦。更加古老而巨大的恆星中則有更重的原子融合出更重的元素,但並非永無止境。元素合成的界線就是鐵,是最安定的存在。地球上的重金屬還有人體中的重元素,可以說都是星星的碎片。現在的宇宙最多的仍是氫元素,和排名第二的氮元素總和大約佔全宇宙百分之九九點八七。但經過數百億數千億年後,鐵的比例會逐漸增加,最後變成都是鐵素的寂靜空間。 後半作者以鐵合金中最重要的鋼為切入,從西臺人和鐵的歷史說起。西臺人因鍛造鐵器而興盛,衰亡可能為了鍛造而跟過度砍伐森林有關。另一假設是西臺人為了尋求森林資源東進,後被稱為韃靼人。西臺帝國以及製鐵技術擴散的歷史還有很多疑問尚待證明。後半則是介紹日本刀的鍛造,還有不銹鋼的歷史。 從

西臺以來人類進入鐵器時代,恐怕鐵會持續材料之王的寶座直到人類消亡。   ▌纖維素造就了傳播之王 纖維素是地球上最大量的有機化合物,全球植物每年共可產出一千億噸。這樣大量的素材實際已被人類廣泛運用,從布料、食品、藥物錠劑都有纖維素,其經過化學加工後在高科技製品中也是不可缺的材料。但生活中最常間的纖維素製品應該是紙。 本章中作者從蔡倫的發明談起,蔡倫發明的紙重要性在於不但原料價格低廉,品質亦大幅提升,使得文化易於保存和傳播,並使中國能發展出書法等藝術。科舉制度能持續到二十世紀,紙的存在也功不可沒。作者從化學角度解釋纖維素的強韌和特點,並介紹了製紙技術在日本的發展以及和紙的特點,還有製紙技術因怛羅斯

之役傳到西方,以及印刷術的發展等。 纖維素作為主要知識和情報載體的王者地位,直到二十世紀後半才因磁性紀錄載體的出現而受到威脅。但陪伴人類兩千年的紙,作為材料也出現了大進展,那就是奈米纖維素(Nanocellulose)的出現,具有輕量而高強度的特點,混合其他材料可能製作出能通電的紙。雖然目前仍有成本高昂的缺點,未來的應用範圍相當廣泛,或許會成為今後社會發展的關鍵吧。   ▌千變萬化的碳酸鈣   若説鐵是材料的王者,碳酸鈣就是大明星。碳酸鈣來自石灰岩,即便是資源貧乏的日本也相當豐富。從教室裡的粉筆到食品添加物,濕壁畫的使用材料,碳酸鈣用途廣泛,在藝術上嘉惠人類良多。作者從地科角度說明碳酸鈣在地球

大量存在的理由。地球誕生時大量二氧化碳溶於海水,並和海底火山噴發的鈣元素結合,這讓地球大氣裡的二氧化碳比例下降,降低氣溫。和地球大小和質量類似的金星就沒那麼好運,海洋在吸收二氧化碳前就被蒸發,結果殘留大量二氧化碳,溫室效應讓溫度高達四百度以上。 石灰和木灰是最易取得的鹼性材料。粉碎的石灰石或貝殼經燒過後的生石灰具有殺菌效果,且能用來照明。石灰能調節土地酸鹼,是糧食生產的重要物質,也能用在防止病蟲害上。宮澤賢治也曾為推廣石灰的使用而奔走。但石灰最重要的用途是作為水泥,能用做建材,其中最能有效利用的就是羅馬人。條條大路通羅馬,固定大路表面的石板還有各種公共建築的都是水泥。 後半段作者則將重點放在海

洋生物。地球誕生時融入海水的二氧化碳也對海生物造成的影響,形成他們禦敵的硬殼。現在能有那麼多大量便宜的攤酸鈣能使用,也是受惠於當時的海中生物。然而碳酸鈣產物也有高價品,即是珍珠。作者在此介紹了珍珠的歷史、日本養殖業的發展,最後提到珊瑚礁和地球暖化危機。   ▌編織出帝國的柔軟素材 作者回憶小學時社會科背誦的地圖符號裡有「桑田」記號,由於當時周遭環境裡已經看不到桑田,作者一直對這個記號抱著疑惑。在昭和初年,桑田面積占日本農地四分之一,大約四成的農家養蠶,這也對日本農家建築和習俗產生影響。『日本書紀』和中國神話都顯示絹很早就出現在人類歷史中,也影響到日本的漢字。 絹觸感光滑,帶有光澤且耐用,並具有

透氣性且能保溫,理由是其成分絲蛋白的性質以及製程上。作者從化學結構和纖維形狀來解釋原因,並介紹絲路的歷史、以及日本從平安朝到現代的養蠶取絲歷史,包括蠶的品種改良、製絲工廠在日本現代化過程的角色。在化纖取代蠶絲的現在,桑田的地圖符號已在二零一三年廢止,科技也將目標轉向蜘蛛絲的利用,或許也可能有強化蠶絲的出現。   ▌運動與交通的世紀革命 二○一七年富比世公布的運動員收入排行榜裡,前百大中球類運動就占了九十名。風靡全球的球類運動裡,許多是在十九世紀後半誕生。這些運動中,比如足球擁有悠久歷史,棒球最初的比賽方式和現在完全不同,但都在差不多的時期裡大幅發展,作者認為這是因為品質優良的橡膠普及,讓球本身

能大幅改良且有穩定品質的緣故。作者接下來介紹了天然橡膠的產生,並從化學結構來說明橡膠有彈性的秘密。哥倫布第二次航行中發現橡膠並帶回歐洲, 英國化學家發現他能擦去鉛筆字跡。但橡膠能被廣泛使用,則是在固特異發明硫化處理使得汽車發明產生交通革命。作者再次提起材料和時代的關係性,他認為如果是中國道士取得橡膠,或許是否也能發明加硫法,若是把橡膠交給羅馬人,是否能讓幫助羅馬帝國更加擴張。想像各種可能,也是一種樂趣。   ▌地球兩端的吸引,開發了強力磁鐵的應用 為什麼磁鐵能吸引鐵的謎直到二十世紀才被解開,最簡單的說法就是電子旋轉產生磁性。電子的旋轉方向有兩種,一般物質中兩者數量相同,抵消了磁力,但由於鐵的原

子構造特殊,無法抵銷,因此產生磁性。人類發現磁鐵時間尚無定論,中一個說法是遊牧民族的鞋或拐杖上的鐵製品吸住了黑色的磁石,而發現了天然磁鐵。最早利用磁鐵的是中國人。作者在此介紹了指南車和「天子南面」的由來,還有鄭和下西洋的歷史,以及古代人因磁石「偏角」現象產生的困擾。伊能忠敬在一八一七年繪製出正確的日本地圖,他的仔細測量是最大的因素,但也受惠於當時日本附近的偏角近乎於零的運氣。 作者接下來介紹了物理學上第一部闡述磁學的專門著作《論磁石》,再從地球的地磁場延伸到近代電磁學的誕生以及在記錄媒體上的應用。最後則介紹了近代日本對強力磁鐵的開發。 ▌人類在天空遨翔的最大功臣 鋁是地球上非常普遍的元素,在地

表上的含量僅次與氧和矽,排行第三。但由於鋁和氧的結合太強,長久以來都是以氧化狀態存在,直到一八二五年才首次被提煉成金屬。具有輕盈、合成後有能有一定強度的優點,鋁作為金屬被人類使用的歷史卻只有兩百年左右,直到二十世紀才確立了量產方式而被廣泛使用。 作者本章中介紹了鋁的歷史,丹麥化學家成功提煉出鋁,以及法國拿破崙三世對鋁的熱愛,還有十九世紀分別成功提煉出鋁的美國科學家。並從化學角度解釋鋁為何輕盈、以及如此容易氧化的元素為什麼位是不易鏽蝕的材料,以及鋁在飛機製造上的應用等等。 ▌無所不在的塑膠改善了人類的生活也污染了未來 作者幼年裝著果汁的玻璃瓶,在一九八二年的食品修正法後被塑膠取代。輕盈,耐用,價

格低廉又容易形塑和上色,還可製作出不同的強度跟機能,塑膠取代了許多素材被應用在今天的日常生活、甚至航太用途上。而最早察覺到塑膠的人是誰呢?作者從工匠獻杯給羅馬皇帝的故事推測,那個不會粉碎的玻璃杯說不定就是塑膠材質的。作者引用日本工業規格的定義,塑膠是一種以高分子物質為主原料以人工製成各種用途的固體,並從分子和化學結構來說明這個定義,並介紹人工合成樹脂的歷史,從十九世紀的硝化棉、到二十世紀確立高分子的概念,到尼龍、聚乙烯的發明以及量產。最後提及塑膠的未來發展以及海洋污染的問題。   ▌影響近代科技最主要的元素:矽 僅僅一個世代,電腦就從企業或是研究機構裡的巨大機器化身為智慧型手機,成為日常生活的

一部份,這數十年來的社會變化,也有許多和電腦有關,因此矽是代表現代社會的材料。 在過去,人類也為了精密計算打造出各種工具,作者從古代希臘人打造用來計算天象的安提基特拉機械開始介紹,談及十七世紀著名的數學家帕斯卡、萊普尼茲設計過齒輪式的計算機,被視為電腦先驅巴貝奇的計算裝置開發、到真空管電腦的誕生。但電腦能發展成今日的樣貌,還是因為矽。 矽和氧是週期表上下相鄰的元素,性質類似,但在生物界幾乎沒有矽的存在。作者從此出發介紹矽的特性、化學構造以及用途,還有半導體從鍺到矽的發展過程,以及對電腦、人工智慧等產業的影響。  

結合Breath Figure 週期性液滴透鏡之奈米雷射直寫加工技術

為了解決fe分子量的問題,作者黃彬勝 這樣論述:

 本研究為利用液滴透鏡輔助奈秒雷射於矽基板上加工奈米結構。開發的技術重點是利用Breath Figure法生成的高分子薄膜微孔模板,並在此模板上浸潤甘油來形成微米尺度之液態透鏡陣列,做為雷射二次聚焦之透鏡,再結合雷射熔融基板材料形成微奈米結構的製造技術。  在Breath Figure製作上,將Polystyrene、Polymethylmethacrylate與甲苯混合成高分子溶液,透過甲苯高揮發特性以帶走基板表面熱能,使環境中水分子冷凝於基板表面,待溶液蒸發完畢形成高分子微孔薄膜。本論文使用Dip Coating方式測試兩種拉升速度,900 mm/min與400 mm/min,以製作所需

之微孔薄膜。其所形成之微孔孔徑在拉升速度900 mm/min時介於 1.2 μm 至 3.8 μm之間,400 mm/min則是介於1 μm 至3.6 μm之間,而孔洞剖面為橢圓狀,在拉升速度900與400 mm/min膜厚分別為1.5、1.2 μm。  接著於微孔孔洞內浸潤甘油形成甘油透鏡,將雷射光經由甘油透鏡二次聚焦達到熔融矽基板。在本研究中探討不同雷射功率與不同掃描間距對於所加工出結構之影響。其結果顯示在雷射以掃描間距20 μm、正離焦4.8 mm、雷射功率密度介於1.63×107~1.74×107 W/cm2能加工出矽微奈米結構,經由量測得知微峰結構直徑介於1.1~1.4 μm之間。在

拉升速度400 mm/min所加工出來的結構高度介於20~160 nm,而在拉升速度900 mm/min結構高度介於20~130 nm。