dc端子規格的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列問答集和資訊懶人包

dc端子規格的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦瑞佩爾(主編)寫的 新能源電動汽車混合動力汽車維修資料大全:國內品牌 和瑞佩爾的 新能源電動汽車混合動力汽車維修資料大全(國外品牌)都 可以從中找到所需的評價。

另外網站(全台瘋)DC端子2.1DC公母接線端子電源綠色免焊端子. DC ...也說明:(全台瘋)DC端子2.1DC公母接線端子電源綠色免焊端子. DC電源連接器. next · 規格: · 商品總價: · 購買數量:.

這兩本書分別來自化學工業 和化學工業所出版 。

龍華科技大學 電子工程系碩士班 吳常熙所指導 陳俊吉的 用於電動輪椅及復健機器手之直流有刷馬達驅動電路設計與驗證 (2019),提出dc端子規格關鍵因素是什麼,來自於直流有刷馬達、驅動電路。

而第二篇論文國立成功大學 電機工程學系 魏嘉玲所指導 馮翼的 具十位元連續逼近式類比數位轉換器與交流偏移電壓校正之CMOS-MEMS電容式加速規後端處理電路 (2019),提出因為有 偏移電壓抑制、連續逼近式類比數位轉換器、電容式加速度感測器、全差分電容電橋、訊號處理電路的重點而找出了 dc端子規格的解答。

最後網站【DC Cable】M-1喇叭線3米(純銅鍍金端子) - momo購物網則補充:結構:雙股粗細純銅、單層批覆 · 端子: 純銅鍍金逼緊式端子規格:3M (接受長度訂做) · 版本:逼緊式香蕉端子/Y端 ...

接下來讓我們看這些論文和書籍都說些什麼吧:

除了dc端子規格,大家也想知道這些:

新能源電動汽車混合動力汽車維修資料大全:國內品牌

為了解決dc端子規格的問題,作者瑞佩爾(主編) 這樣論述:

本叢書分為國內品牌與國外品牌兩冊。本冊為國內品牌分冊,主要涉及的品牌車型有比亞迪(秦EV、宋EV、元EV、e5、e6、唐DM、宋DM、秦PHEV),北汽新能源(EC180/EC200/EC220/EC3、EU220/EU260/EU300/EU400/EU5、EV160/EV200、EX200/EX260/EX360),吉利(帝豪EV300/EV450、帝豪GSe、博瑞GE、帝豪HEV),江淮新能源(iEV4、iEV6E/ iEV6S、iEV7S),榮威(ERX5、Ei5、e550、ei6),眾泰(雲100、E200、芝麻E30),長安(逸動EV、奔奔EV、CS15 EV),奇瑞新能源(EQ1

、瑞虎3Xe、艾瑞澤7e),廣汽傳祺(GE3、GS4、GA5),長城(C30EV、魏派P8),東風風神(E70、E30L、A60),其他品牌(知豆D2,蔚來ES8,江鈴E200,雲度π3)。 編選資料主要包括以下幾個方面的內容:一是高壓部件的安裝位置、部件結構分解的資訊;二是高壓電氣部件介面端子分佈,接外掛程式端子針腳排列與功能定義及檢測資料;三是各控制系統的故障代碼含義與相關故障快速排除方法;四是各車型高壓系統電路圖,如電池管理系統電路、電機驅動控制電路、整車控制器電路、充電控制電路;五是高壓系統總成部件,如高壓電池包、驅動電機、車載充電機、DC-DC轉換器、變速器與減速器、電動空調系統等

關鍵技術參數;六是常用維護保養資料,如油液規格及用量、熔絲與繼電器盒資訊等。因數據繁多,限於篇幅,不同品牌車型只能擇其要點選錄。 該書全部資料來自汽車廠商及維修一線,真實準確,車型眾多,內容全面,可以多方面滿足產品研發,教學參考,維修查閱的資料需求。既可作為新能源汽車領域技術人員的工具書籍,也可以用作新能源汽車專業教學的輔助資料。 中德教育與科技合作促進中心(www.kfbtz.org),是德國法院註冊的公益協會,協會宗旨是促進和發展中德兩國在經濟、文化和學術方面的交流,致力於為廣大中德企業、政府以及高校提供在國際交流和創新培訓領域內的全方位服務,為中外企業發展提供跨文化

和法律諮詢,在中德兩國的教育、科技和文化交流領域發揮積極的促進作用。   羅本進,德國斯圖加特大學工學博士,中德教育與科技合作促進中心主席,全德華人機電工程學會副主席,德國汽車零部件企業前瞻開發部高級系統工程師。他多年來一直致力於混合動力系統、電驅動系統、全自動變速器及工業4.0的研究,具有豐富的實踐經驗。   劉晨光,卡爾斯魯厄理工學院應用電腦學博士,全德華人機電工程學會特聘專家,德國汽車系統供應商研發中心高級計算工程師。他多年來從事汽車變速器概念設計、類比模擬計算、產品資料管理、應用軟體設計實現、技術商務翻譯和專利管理工作。   王京晶,德國拜洛伊特大學企業管理博士,領導力和創新型組織培訓

專家、教練,世界經理人推薦書籍《GlobalizationofLeadershipDevelopment》作者,德國汽車企業銷售創新、銷售大資料及銷售培訓領域高級專案經理。劉光明,清華大學工學博士,德國亞琛工業大學碩士,全德華人機電工程學會特聘專家,德國汽車企業高級工程師。他在新能源汽車動力電池、能量管理與電驅動方面有長期的研究及實踐經驗。 第1章比亞迪新能源汽車001 1.1比亞迪秦EV(2017~)/ 002 1.1.1高壓控制模組介面分佈 / 002 1.1.2電動助力轉向系統電路與端子檢測 / 002 1.1.3電子駐車系統端子檢測 / 004 1.1.4安全氣囊系

統端子檢測 / 005 1.1.5智慧鑰匙系統端子檢測 / 006 1.1.6防盜系統端子檢測 / 007 1.1.7中控門鎖系統端子檢測 / 008 1.1.8電動空調系統端子檢測 / 009 1.1.9多媒體系統端子檢測 / 010 1.1.10多媒體系統外置功放端子檢測 / 011 1.1.11全景系統元件位置與電路 / 012 1.1.12全景系統端子檢測 / 014 1.2比亞迪宋EV(2017~)/ 015 1.2.1電池管理控制器端子檢測 / 015 1.2.2動力總成技術參數 / 016 1.2.3驅動電機旋變端子定義 / 017 1.2.4高壓控制模組介面分佈 / 017 1

.2.5電動空調系統端子檢測 / 017 1.3比亞迪元EV(2018~)/ 019 1.3.1高壓系統部件位置及原理 / 019 1.3.2高壓電池包位置與介面分佈 / 020 1.3.3電池管理控制器端子資料 / 022 1.3.4充電介面位置與端子定義 / 025 1.3.5創酷版高壓電控總成介面分佈 / 026 1.3.6高壓電控總成端子定義 / 026 1.3.7主控制器端子定義 / 029 1.3.8自動空調(空調與電池熱管理分開)端子檢測 / 030 1.3.9手動空調(空調與電池熱管理二合一)端子定義 / 032 1.3.10自動空調(空調與電池熱管理二合一)端子定義 / 03

4 1.4比亞迪e5(2016~)/ 035 1.4.1電池管理系統端子檢測 / 035 1.4.2高壓控制模組介面位置與端子定義 / 037 1.4.3主控制系統端子定義 / 040 1.4.4漏電感測器電路 / 042 1.5比亞迪e6(2016~)/ 042 1.5.1電池管理控制器端子檢測 / 042 1.5.2驅動電機控制器端子檢測 / 043 1.5.3多媒體系統(CD配置)電路 / 045 1.5.4多媒體系統CD主機端子檢測 / 046 1.5.5多媒體系統(DVD配置)端子檢測 / 047 1.6比亞迪唐DM PHEV(2016~)/ 052 1.6.1高壓電池包電路 / 0

52 1.6.2電池管理系統電路與端子檢測 / 054 1.6.3高壓配電箱端子檢測 / 057 1.6.4前驅電機控制器電路與端子檢測 / 057 1.6.5後驅電機控制器電路與端子定義 / 061 1.6.6全新一代唐DM BSG電機控制器端子定義 / 063 1.6.7全新一代唐DM前驅電機控制器端子檢測 / 064 1.6.8全新一代唐DM後驅電機控制器端子檢測 / 065 1.6.9全新一代唐DM整車控制器端子檢測 / 066 1.6.10全新一代唐DM電池管理控制器端子檢測 / 068 1.6.11全新一代唐DM高壓互鎖回路電路 / 070 1.6.12全新一代唐DM高壓配電箱端子

檢測 / 071 1.6.13全新一代唐DM車載充電機端子定義 / 071 1.6.14全新一代唐DM多媒體系統端子定義 / 072 1.7比亞迪宋DM PHEV(2017~)/ 078 1.7.1電池管理控制器端子檢測 / 078 1.7.2前驅電機控制器端子檢測 / 079 1.7.3後驅電機控制器端子檢測 / 080 1.7.4整車控制器端子檢測 / 081 1.8比亞迪秦PHEV(2014~)/ 082 1.8.1電池管理控制器端子檢測 / 082 1.8.2電池管理系統電路 / 082 1.8.3電池管理系統故障代碼 / 086 1.8.4充電系統故障代碼 / 092 1.8.5車載

充電電路 / 094 1.8.6驅動電機控制器端子檢測 / 094 1.8.7驅動電機控制器與DC總成電路 / 096 1.8.8驅動電機與DC-DC轉換系統故障代碼 / 098 1.8.9驅動電機控制系統故障代碼 / 098 1.8.10高壓配電箱端子檢測 / 100 1.8.11高壓配電箱電路 / 101 1.8.12P擋電機控制器電路 / 101 第2章北汽新能源汽車104 2.1北汽EC180/EC200/EC220/EC3(2017~)/ 105 2.1.1EC3高壓系統部件 / 105 2.1.2EC3電子動力單元電路 / 105 2.1.3EC3電子動力單元端子定義 / 105

2.1.4EC3驅動電機控制單元電路 / 107 2.1.5EC3驅動電機控制單元端子定義 / 107 2.1.6EC3整車控制系統電路 / 109 2.1.7EC3整車控制器端子定義 / 111 2.1.8高壓線束分佈 / 113 2.1.9高壓電路系統電路 / 113 2.1.10整車控制器安裝位置 / 113 2.2北汽EU220/EU260/EU300/EU400/EU5(2016~)/ 115 2.2.1EU5高壓線束分佈 / 115 2.2.2EU5電池管理與充電控制系統電路 / 115 2.2.3EU5電池管理系統端子定義 / 118 2.2.4EU5電機控制系統電路 / 12

0 2.2.5EU5電機控制器端子定義 / 121 2.2.6EU220/EU260電機控制系統端子定義 / 121 2.2.7高壓電池快換介面端子定義 / 123 2.2.8整車控制器端子定義 / 124 2.2.9整車控制系統電路 / 126 2.2.10EU5全車控制器安裝位置 / 130 2.3北汽EV160/EV200(2015~2016)/ 130 2.3.1高壓部件檢測方法 / 130 2.3.2充電機端子定義 / 132 2.3.3高壓線束總成端子定義 / 133 2.3.4高壓配電箱端子定義 / 133 2.3.5高壓互鎖連接線路 / 135 2.3.6驅動電機控制器端子定義

/ 135 2.4北汽EX200/EX260/EX360(2016~)/ 136 2.4.1電池管理控制器端子定義 / 136 2.4.2MCU低壓控制外掛程式端子定義 / 137 2.4.3PDU低壓控制外掛程式端子定義 / 139 2.4.4整車控制器端子定義 / 139 2.4.5空調控制器端子定義 / 141 2.4.6組合儀錶連接端子定義 / 143 2.4.7中控大屏連接端子定義 / 143 第3章吉利新能源汽車145 3.1帝豪EV300~EV450(2017~)/ 146 3.1.1動力電池系統部件位置與電路 / 146 3.1.2動力電池系統故障代碼 / 146 3.1.

3高壓配電系統部件位置與電路 / 150 3.1.4電機控制系統部件位置與電路 / 151 3.1.5電機控制器端子定義 / 154 3.1.6電機控制系統故障代碼 / 154 3.1.7高壓冷卻系統部件位置與控制原理 / 159 3.1.8充電系統部件位置與控制原理 / 160 3.1.9充電系統故障代碼 / 164 3.1.10減速器部件位置與控制原理 / 165 3.1.11車輛控制系統部件位置與控制原理 / 168 3.1.12車身控制模組端子資訊 / 172 3.1.13車輛控制單元故障代碼 / 174 3.1.14資料通信系統部件位置與控制原理 / 178 3.1.15空調系統部件

位置與控制原理 / 180 3.1.16自動空調控制器端子資訊 / 185 新能源汽車是指採用非常規的車用能源(即除汽油、柴油之外)作為動力來源(或使用常規的車用燃料、採用新型車載動力裝置),綜合車輛的動力控制和驅動方面的先進技術,形成的技術原理先進,具有新技術、新結構的汽車。 廣義上的新能源汽車包括純電動汽車(BEV,Battery Electric Vehicle)、增程插電式電動汽車(PHEV,Plug in Hybrid Electric Vehicle)(裝有小排量汽油發動機但行駛動力以電為主)、油電或油氣混合動力汽車(HEV,Hybrid Electric V

ehicle)、燃料電池電動汽車(PCEV,Fuel Cell Electric Vehicle)、氫發動機汽車、太陽能和其他新型能源汽車等。目前新能源汽車一般特指純電動汽車與插電增程式電動汽車。 純電動汽車顧名思義就是純粹靠電能驅動的車輛,不需要其他能量,如汽油、柴油等。它可以通過家用電源(普通插座)、專用充電樁或者在特定的充電場所進行充電,以滿足日常行駛需求。 廣義上的混合動力汽車(Hybrid Vehicle)是指車輛驅動系統由兩個或多個能同時運轉的單個驅動系統聯合組成的車輛,車輛的行駛功率依據實際的車輛行駛狀態由單個驅動系統單獨或共同提供。 通常所說的混合動力汽車,一般是指油電混

合動力汽車(HEV,Hybrid Electric Vehicle),即採用傳統的內燃機(柴油機或汽油機)和電動機作為動力源。 新能源汽車中的插電式混合動力電動汽車,是特指通過插電進行充電的混合動力汽車。一般需要專用的供電樁進行供電,在電能充足時,採用電動機驅動車輛,電能不足時,發動機會參與到驅動或者發電環節。 插電式混合動力汽車是可以在正常使用情況下,從非車載裝置中獲取電能,以滿足車輛一定的純電動續駛里程的混合動力汽車,可分為增程式和插電式。 增程式混合動力汽車是在純電動汽車的基礎上開發的電動汽車。之所以稱之為增程式混合動力汽車是因為車輛追加了增程器(傳統發動機加發電機),而為車輛追加

增程器的目的是進一步提升純電動汽車的續駛里程,使其能夠儘量避免頻繁地停車充電。 插電式混合動力汽車是由混合動力汽車進化而來的,它繼承了混合動力汽車的大部分特點,但把混合動力汽車的功率型電池替換為比容量(單位品質所包含的能量)更大的能量型電池,如此一來動力電池就有足夠的能量保證車輛可以在零排放、無油耗的純電動模式下行駛一定的距離。 從驅動的角度來看,增程式混合動力汽車無論是工作在純電動模式下還是增程模式下,其車輪始終由電動機獨立驅動,而插電式混合動力汽車如果工作在混合動力模式下,發動機會與電機一同參與到驅動車輪的行列(經動力耦合後)。 從系統選型的角度來說,增程式混合動力汽車必須是串聯式混

合動力形式,而插電式混合動力汽車可以是並聯式混合動力形式,也可以是混聯式混合動力形式。 燃料電池電動汽車是利用氫氣和空氣中的氧在催化劑的作用下在燃料電池中經電化學反應產生的電能作為主要動力源驅動的汽車。 隨著新能源電動汽車這一行業的興起,整個產業鏈的配套服務,相關電動汽車配件、服務元件的研發,教育產業中汽車新能源專業建設,以及電動汽車的售後技術支援,維修養護服務等都在尋找著屬於各自的機遇。在技術出版輸出方面,種類繁多的相關新能源汽車技術,電動汽車原理構造、維修與養護的圖書也數不勝數,但能夠提供對應車輛資料與技術資料的書籍卻很少。為此,筆者根據當前市場熱銷及電動汽車(除純電車型外還包括插電混

動與油電混動車型)保有量的排行,選取了數款國內外知名品牌新能源電動與混合動力車型,並集中整理了這些車型的技術資料,以滿足行業需求。 本套叢書分為國內品牌與國外品牌兩個分冊。本分冊為國內品牌分冊,主要涉及的品牌車型有比亞迪(秦EV、宋EV、元EV、e5、e6、唐DM PHEV、宋DM PHEV、秦PHEV),北汽新能源(EC180/EC200/EC220/EC3、EU220/EU260/EU300/EU400/EU5、EV160/EV200、EX200/EX260/EX360),吉利(帝豪EV300~EV450、帝豪GSe、博瑞GE PHEV、帝豪HEV),江淮新能源(iEV4、iEV6E/

iEV6S、iEV7S),榮威(ERX5、Ei5、e550、ei6),眾泰(雲100、E200、芝麻E30),長安(逸動EV、奔奔EV、CS15 EV),奇瑞新能源(EQ1EV、瑞虎3Xe、艾瑞澤7e PHEV),廣汽傳祺(GE3、GS4 PHEV、GA5 PHEV),長城(C30EV、魏派P8 PHEV),東風風神(E70、E30L、A60 EV),其他品牌(知豆D2、蔚來ES8、江鈴E200 EV、雲度π3)。 編選資料主要包括了以下幾個方面:一是高壓部件的安裝位置、部件結構分解的資訊;二是高壓電氣部件介面位置,接外掛程式端子分佈與功能定義及資料檢測;三是各控制系統的故障代碼含義與相關故

障快速排除方法;四是各車型高壓系統電路圖,如電池管理系統電路、電機驅動控制電路、整車控制器電路、充電控制電路;五是高壓系統總成部件,如高壓電池包、驅動電機、車載充電機、DCDC轉換器、變速器與減速器、電動空調系統等的關鍵技術參數;六是常用維護保養資料,如油液規格及用量、熔絲與繼電器盒資訊等。因數據繁多,限於篇幅,不同品牌車型只能擇其要點選錄。 本書由瑞佩爾主編,此外參加編寫的人員還有朱其謙、楊剛偉、吳龍、張祖良、湯耀宗、趙炎、陳金國、劉豔春、徐紅瑋、張志華、馮宇、趙太貴、宋兆傑、陳學清、邱曉龍、朱如盛、周金洪、劉濱、陳棋、孫麗佳、周方、彭斌、王坤、章軍旗、滿亞林、彭啟鳳、李麗娟、徐銀泉。在

編寫過程中,參考了大量汽車廠商的文獻資料,在此,謹向這些資料資訊的原創者們表示由衷的感謝! 囿於筆者水準及成書之匆促,書中不足在所難免,還望廣大讀者朋友及業內專家多多指正。 編者

dc端子規格進入發燒排行的影片

▌建議開啟 #4K 畫質 達到高品質觀影享受

不要錯過啦!http://bit.ly/2lAHWB4

阿嬤曾經說過:那個年代誰家會有電視?!有台收音機就樂得大家圍在一起聽廣播了......

大家都拿著手機低頭滑呀滑,以前一家子窩在一起的溫度似乎也隨之流逝。
不過定點新聞、說書電台、賣藥廣告,到近期的流行 DJ,甚至是 Podcast。
每個人的一生中,或多或少都有聽過廣播 RADIO 吧?

儘管山進 WR-16 復古收音機,仍需要有線供電,藍牙編碼只有 SBC,但它復古的外觀和偏暖的音質也讓人聽了就像坐上時光機回到被遺忘的時光。

那麼就讓伊森帶大家乘著時光機,透過滿滿情懷的山進收音機重溫 RADIO 的美好吧。


::: 章節列表 :::
0:46 外觀規格
2:53 音質體驗
5:08 不只是廣播
6:42 最後總結


::: SANGEAN WR-16 規格 :::
外觀材質:MDF 中纖板+胡桃木材質
無線支援:Bluetooth 4.1 / SBC 編碼
輸入端子:3.5mm AUX-in
輸出端子:Rec Out / Stereo Out
喇叭單體:3 吋 10W 全音域
低音強化:動態重低音強化功能 DBB
訊號收聽:二波段 FM/AM 細緻準確選台結構
啟用電源 :DC 12V-1A / AC 120V-25W
NFC 支援:Yes
數位聲音廣播 DAB: No
USB:電力輸出 5V-1A
商品產地:中國
保固登錄:一年
建議售價:NT$4,300





--------------------------------------
#山進 #SANGEAN #WR16 #DDR66BT #收音機 #藍牙 #Spotify #廣播 #NFC

📖 Facebook:https://www.facebook.com/3cdog/
📖 Instagram:https://www.instagram.com/3c_dog/
📖 官方網站:https://3cdogs.com/
📖 回血賣場:https://shopee.tw/3cdog

▋ 有任何問題都來這邊找我們:[email protected]

用於電動輪椅及復健機器手之直流有刷馬達驅動電路設計與驗證

為了解決dc端子規格的問題,作者陳俊吉 這樣論述:

本篇論文以H橋驅動電路和市售驅動晶片做直流有刷馬達驅動控制。在電動輪椅的研究中上控制器經過本實驗室自行開發之單線UART傳輸介面傳輸並控制下控器,下控器利用微控制器輸出PWM脈波改變H橋驅動電路中電晶體的切換責期來控制電動輪椅馬達的轉速,在下控制系統中加入電流感測晶片和溫度感測晶片,使微控制器可以在接收到兩顆感測晶片回傳的溫度及電流訊號後進行過溫與過電流時的應變處理。在復健機器手的研究中設計出結合意法半導體的STM32F302ARM晶片驅動晶片的微小型驅動模組來控制微型直流有刷馬達,在驅動晶片中有防止溫度和電流過高的保護機制,可以讓微控制器在接收到驅動晶片的警告訊號後可以做應變處理,此研究所

使用的微型直流有刷馬達有編碼器,可以將馬達當前運作狀態回授給微控制器,可以透過ARM進行PID控制,能更精準控制馬達的角度。

新能源電動汽車混合動力汽車維修資料大全(國外品牌)

為了解決dc端子規格的問題,作者瑞佩爾 這樣論述:

本書主要介紹了2016~2019年這四年間國外品牌電動和混動汽車的常用維修資料。保有量大的主流車型加入高壓系統電路圖、關鍵部件拆裝方法部分資料,以部件分解圖、端子圖、線路分佈圖以及三電技術參數、端子資料為主要內容。 第1章 特斯拉汽車001 1.1MODEL S(2014~)/ 002 1.1.1高壓系統部件位置 / 002 1.1.22014~2016年款車型熔絲與繼電器資訊 / 002 1.1.32017~2018年款車型熔絲與繼電器資訊 / 005 1.2MODEL X(2016~)/ 008 1.2.1高壓系統部件位置 / 008 1.2.2四輪定位資料 / 009

1.2.3制動系統檢修資料 / 009 1.2.4熔絲與繼電器資訊 / 009 第2章 寶馬汽車014 2.1i3(2016~)/ 015 2.1.1高壓系統部件位置 / 015 2.1.2高壓電池位置與部件分解 / 015 2.1.3高壓電池系統電路 / 016 2.1.4高壓電池管理電子裝置電路與端子定義 / 017 2.1.5便捷充電系統電路與端子定義 / 019 2.1.6驅動元件冷卻系統部件位置 / 022 2.1.7電機電子裝置介面分佈 / 023 2.1.8全車控制單元位置 / 023 2.2530Le PHEV(2018~)/ 024 2.2.1高壓系統部件位置 / 024

2.2.2高壓電池位置與部件分解 / 025 2.2.3高壓電池系統電路 / 026 2.2.4車載充電機端子定義 / 027 2.2.5驅動電機位置與結構 / 029 2.2.6電機電子裝置介面分佈 / 030 2.2.7電機驅動裝置端子定義 / 030 2.2.8帶電機的變速器結構 / 033 2.3X1 25Le PHEV(2017~)/ 033 2.3.1高壓系統部件位置 / 033 2.3.2高壓電池位置與部件分解 / 034 2.3.3高壓電池管理器端子定義 / 035 2.3.4便捷充電系統低壓端子定義 / 037 2.3.5驅動電機與電機控制器電路 / 038 2.3.6電機

電子裝置端子定義 / 038 2.3.7驅動系統部件位置 / 041 第3章 賓士汽車042 3.1C350 PHEV(2016~)/ 043 3.1.1高壓系統部件位置 / 043 3.1.2高壓系統部件功能與特性 / 044 3.1.3高壓互鎖電路 / 045 3.2GLE500e PHEV(2016~)/ 045 3.2.1整車動力系統技術參數 / 045 3.2.2高壓系統部件位置 / 046 3.2.3高壓系統部件功能與特性 / 047 3.2.4高壓互鎖電路 / 049 3.3S500 PHEV(2016~)/ 049 3.3.1高壓系統技術參數 / 049 3.3.2混合動力系

統部件連接 / 050 3.3.3集成電動機的變速器 / 051 3.3.4高壓系統主要部件介面 / 051 3.3.5高壓線束分佈 / 053 3.3.6高壓互鎖電路 / 053 3.4S400 HEV(2015~)/ 055 3.4.1整車系統連接網路 / 055 3.4.2混合動力系統部件位置 / 055 3.4.3混合動力系統技術參數 / 055 3.4.4高壓系統部件結構 / 057 第4章 大眾-奧迪汽車059 4.1高爾夫GTE PHEV(2015~)/ 060 4.1.1電驅動功率控制裝置端子定義 / 060 4.1.2高壓電池充電機端子定義 / 060 4.1.3高壓電池低

壓端子定義 / 061 4.1.4全車控制器位置 / 062 4.2途觀L PHEV(2018~)/ 064 4.2.1高壓系統部件位置 / 064 4.2.2高壓電池連接部件 / 064 4.2.3高壓電池充電機安裝部件 / 064 4.2.4功率電子單元裝配 / 064 4.2.51.4T DJZ發動機控制模組端子定義 / 064 4.2.6全車控制器位置 / 069 4.3帕薩特PHEV(2018~)/ 071 4.3.1高壓電池低壓端子定義 / 071 4.3.2電驅動控制模組端子定義 / 074 4.3.3車載充電機端子定義 / 075 4.3.4全車控制器位置 / 077 4.4奧

迪Q7 PHEV(2016~)/ 079 4.4.1高壓系統部件位置 / 079 4.4.2高壓電池部件拆裝要點 / 079 4.4.3電驅動電力電子裝置部件分解 / 081 4.4.4電驅動單元部件分解 / 082 4.4.5高壓線纜分佈 / 083 4.4.6車載充電機與充電介面部件 / 085 第5章 通用別克-雪佛蘭-凱迪拉克汽車087 5.1別克君越H30 HEV(2017~)/ 088 5.1.1全新混動車型技術特點 / 088 5.1.2高壓電池部件分解 / 089 5.1.3300V蓄電池正極和負極電纜的*換 / 091 5.1.4混動系統動力總成控制電路 / 095 5.2

別克VELITE 5 PHEV(2017~)/ 097 5.2.1高壓電池總成部件分解 / 097 5.2.2高壓電池控制模組端子定義 / 099 5.2.3驅動電機控制器端子定義 / 103 5.2.4混合動力控制模組端子定義 / 106 5.2.55ET50混動變速器結構 / 108 5.2.65ET50混動變速器部件分解 / 108 5.2.75ET50混動變速器軸承與墊圈位置 / 114 5.2.85ET50混動變速器密封件位置 / 114 5.3雪佛蘭邁銳寶XL HEV(2017~)/ 116 5.3.1混動動力系統電子部件 / 116 5.3.2高壓電池管理系統電路 / 116 5

.3.3混合動力控制模組端子定義 / 121 5.3.4電源逆變器端子定義 / 122 5.3.5機油壽命系統重定 / 123 5.4凱迪拉克CT6 PHEV(2017~)/ 124 5.4.1混合動力系統部件 / 124 5.4.2高壓電池充電控制模組端子定義 / 124 5.4.3高壓電池充電控制電路 / 125 5.4.4高壓系統冷卻控制電路 / 128 5.4.5混合動力控制模組端子定義 / 128 5.4.6電源逆變器端子定義 / 132 5.4.74EL70混動變速器部件位置 / 133 5.4.84EL70混動變速器軸承與墊圈位置 / 134 5.4.94EL70混動變速器部件分

解 / 135 5.4.10機油壽命系統重定 / 140 第6章 福特-林肯汽車142 6.1蒙迪歐 PHEV(2018~)/ 143 6.1.1高壓電池位置與部件分解 / 143 6.1.2高壓電池控制模組故障代碼 / 144 6.1.3高壓電池控制模組端子定義 / 148 6.1.4高壓電池與充電控制電路 / 148 6.1.5高壓電池充電系統故障代碼 / 158 6.1.6混動發動機控制系統電路 / 159 6.1.7驅動電機與變速器控制電路 / 169 6.1.8HF35無級變速器部件分解 / 171 6.1.9帶電機的變速器控制模組端子定義 / 173 6.1.10HF35變速器端

子定義 / 175 6.2C-MAX Energi PHEV(2017~)/ 176 6.2.1高壓電池位置與部件分解 / 176 6.2.2高壓電池控制模組故障代碼 / 176 6.2.3高壓電池充電系統故障代碼 / 181 6.3林肯MKZ HEV(2018~)/ 183 6.3.1高壓電池位置與部件分解 / 183 6.3.2高壓電池控制模組故障代碼 / 183 6.3.3高壓電池控制模組端子定義 / 187 6.3.4DC-DC轉換器模組故障代碼 / 189 6.3.5HF35變速器行星齒輪與主減速器結構 / 190 第7章 豐田-雷克薩斯汽車191 7.1普銳斯PHEV(2017~

)/ 192 7.1.1ZVW52L/ZVW52R高壓系統線束分佈 / 192 7.1.2ZVW52L/ZVW52R高壓電池溫度管理電路 / 192 7.1.3ZVW52L/ZVW52R高壓電池管理單元電路 / 192 7.1.4ZVW52L/ZVW52R高壓電池充電控制電路 / 192 7.1.5ZVW52L/ZVW52R逆變器與換擋控制電路 / 192 7.1.6ZVW52L/ZVW52R混合動力控制系統電路 / 192 7.2凱美瑞HEV(2016~)/ 213 7.2.1A25B-FXS混動發動機ECM端子檢測 / 213 7.2.2混合動力控制系統部件位置 / 217 7.2.3混合

動力控制模組端子檢測 / 219 7.2.4帶轉換器的逆變器總成端子檢測 / 224 7.2.5P710混動變速器技術參數與結構 / 225 7.3卡羅拉-雷淩HEV(2016~)/ 226 7.3.1混合動力控制系統部件位置 / 226 7.3.2高壓電池管理器端子檢測 / 228 7.3.3電機控制器端子檢測 / 229 7.3.48ZR-FXE混動發動機ECM端子檢測 / 230 7.3.5混合動力控制模組端子檢測 / 233 7.3.6P410混動變速器技術參數與結構 / 237 7.3.7電動機與逆變器總成控制電路 / 238 7.3.8高壓電池管理系統電路 / 238 7.3.9變

速器換擋控制系統電路 / 238 7.3.10車輛巡航控制系統電路 / 238 7.4雷克薩斯CT200H HEV(2012~)/ 247 7.4.1混合動力控制系統部件位置 / 247 7.4.2高壓電池管理器端子檢測 / 249 7.4.32ZR-FXE混動發動機ECM端子檢測 / 249 7.4.4混合動力控制模組端子檢測 / 253 7.4.5P410混動變速器控制模組端子檢測 / 258 7.5雷克薩斯ES300H HEV(2012~)/ 259 7.5.1混合動力控制系統部件位置 / 259 7.5.2高壓電池管理器端子檢測 / 262 7.5.3逆變器總成端子檢測 / 263 7

.5.42AR-FXE混動發動機ECM端子檢測 / 264 7.5.5混合動力控制模組端子檢測 / 268 7.5.6P314混動變速器技術參數與結構 / 272 第8章 本田汽車273 8.1雅閣HEV(2016~)/ 274 8.1.1高壓系統部件位置 / 274 8.1.2高壓電池系統電路 / 275 8.1.3動力驅動單元控制電路 / 275 8.1.4高壓電池單元拆裝步驟 / 279 8.1.5智慧動力單元(IPU)拆裝步驟 / 282 8.2思鉑睿HEV(2017~)/ 285 8.2.1高壓系統部件位置 / 285 8.2.2LFA11混動發動機PCM端子定義 / 285 8.

2.3變速器(ECVT)換擋控制單元與駐車控制單元端子定義 / 290 8.3CR-V HEV(2018~)/ 291 8.3.1高壓系統部件位置 / 291 8.3.2高壓電池管理器端子定義 / 293 8.3.3電機控制單元(PCU)端子定義 / 297 第9章 日產汽車299 9.1聆風LEAF(2014~)/ 300 9.1.1電動車輛控制系統電路 / 300 9.1.2高壓電池控制系統電路 / 302 9.1.3車載充電機端子定義 / 303 9.1.4驅動電機逆變器端子定義 / 304 9.1.5車輛控制模組(VCM)端子定義 / 305 9.2樓蘭HEV(2015~)/ 307

9.2.1混合動力系統部件位置 / 307 9.2.2高壓電池控制系統電路 / 309 9.2.3高壓電池低壓端子定義 / 310 9.2.4牽引電機控制電路 / 310 9.2.5牽引電機逆變器端子定義 / 312 9.2.6混合動力控制系統電路 / 312 9.2.7混合動力控制模組(HPCM)端子定義 / 315 第10章 現代-起亞汽車317 10.1現代索納塔HEV(2016)/ 318 10.1.1混合動力系統部件位置 / 318 10.1.2電動車窗與天窗初始化 / 318 10.1.3油液規格與用量 / 319 10.1.4車輪定位資料 / 319 10.2現代悅動EV(2

017~)/ 320 10.2.1電動汽車高壓系統主要部件位置 / 320 10.2.2油液規格與用量 / 320 10.2.3車輪定位資料 / 321 10.2.4平均能耗手動與自動初始化方法 / 321 10.3起亞K5 HEV(2016~)/ 321 10.3.1混合動力系統部件位置 / 321 10.3.2高壓電池系統技術參數 / 322 10.3.3高壓電池部件組成 / 322 10.3.4混合動力驅動系統技術參數 / 323 10.3.5混合動力控制總成(HPCU)組成 / 324 10.3.6電機控制器端子定義 / 324 10.3.7驅動電機冷卻系統部件位置 / 326 10.

4起亞K5 PHEV(2018~)/ 326 10.4.1混合動力系統部件位置 / 326 10.4.2熔絲與繼電器資訊 / 327 10.4.3車輪定位資料 / 331 10.4.4油液規格與用量 / 332 10.4.5天窗系統初始化 / 332 10.5起亞KX3 EV(2018~)/ 332 10.5.1熔絲與繼電器資訊 / 332 10.5.2車輪定位資料 / 336 10.5.3油液規格與用量 / 336 10.5.4天窗初始化 / 336 10.5.5電動車窗初始化 / 336 10.6華騏300E EV(2017~)/ 336 10.6.1高壓系統部件位置 / 336 10.6

.2高壓電池管理器與車載充電機端子定義 / 337 10.6.3電能控制模組組成 / 340 10.6.4電能控制模組端子定義 / 342 10.6.5天窗初始化 / 345

具十位元連續逼近式類比數位轉換器與交流偏移電壓校正之CMOS-MEMS電容式加速規後端處理電路

為了解決dc端子規格的問題,作者馮翼 這樣論述:

近年來,隨著少子化問題日益嚴重與平均壽命不斷成長,未來將會面臨醫護人員嚴重不足的困境,因此穿戴式醫療裝置、遠端醫療等科技將能降低醫護人員的負擔。本論文將實現一單軸電容式加速度感測系統,應用於穿戴式裝置上,因此選用CMOS-MEMS製程來實現此系統,以達到小體積、低功耗及低成本之訴求。此外,由於感測器不匹配會導致交流偏移電壓,經過後端處理電路後,會轉為直流偏移,容易導致輸出飽和,因此提出了偏移消除迴路,來抑制交流偏移電壓以及直流偏移電壓。另外為了方便分析加速度訊號,因此使用了10位元之連續逼近式類比數位轉換器,將加速度訊號轉為數位碼。本晶片採用台灣積體電路公司(TSMC) 0.35μm CMO

S/MEMS 2P4M 3.3V混合訊號製程加上微機電後製程製作,選用48 S/B封裝,晶片總面積為2.834×2.201 mm2,包含感測器與訊號處理電路。由加速度振動量測平台(Shaker)提供穩定的加速度應力,可量測範圍為±14g,其靈敏度為218.4 (mV/g),全系統含感測器之總消耗功率為2.4mW。