bsl-4的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列問答集和資訊懶人包

bsl-4的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦Shapshak, Paul (EDT)/ Sinnott, John (EDT)/ Somboonwit, Charurut 寫的 Global Virology I - Identifying and Investigating Viral Diseases 可以從中找到所需的評價。

中原大學 生物科技研究所 吳宗遠所指導 張慧英的 在桿狀病毒表現系統中建立細胞融合技術以發展抗立百病毒之藥物篩選平台 (2020),提出bsl-4關鍵因素是什麼,來自於立百病毒、桿狀病毒表達載體系統、細胞融合、融合抑製劑、蘇拉明。

而第二篇論文臺北醫學大學 藥學系(碩博士班) 許明照所指導 黃弘旭的 以離子複合CRISPR/Cas9 質體於烷基化聚乙烯亞胺崁合人類血清白蛋白奈米粒子以基因編輯剃除PD-L1表達應用於免疫治療之研究。 (2019),提出因為有 人體血清白蛋白奈米顆粒、聚乙烯亞胺、細胞程式死亡-配體1、基因遞送的重點而找出了 bsl-4的解答。

接下來讓我們看這些論文和書籍都說些什麼吧:

除了bsl-4,大家也想知道這些:

Global Virology I - Identifying and Investigating Viral Diseases

為了解決bsl-4的問題,作者Shapshak, Paul (EDT)/ Sinnott, John (EDT)/ Somboonwit, Charurut 這樣論述:

This book provides trajectories and illustrations of viruses that have catapulted into the global arena (linked to humans, animals, and vectors) due to human behaviors in recent years, as well as viruses that have already shown expansion among humans, animals, and vectors just a few decades ago. Top

ics in the current book include: vaccinesenvironmental impactemerging virus transmissionFilovirus (Ebola)hemorrhagic feversflavivirusesDengue evasionpapillomavirusesHepatitis CNipah virusgiant viruseshantavirusesbunyavirusesencephalitidesWest Nile virusZika virusXMRVhenipaviruseshuman respiratory sy

ncytial virusinfluenza A virusseveral aspects of HIV-1 Paul Shapshak, PhD is a member of the Division of Infectious Diseases and International Health, Department of Internal Medicine, and the Department of Psychiatry and Behavioral Medicine, at USF Morsani School of Medicine. His research interest

s include molecular virology.John Sinnott, MD, is Chairman of the Department of Internal Medicine at the USF Morsani College of Medicine and holds the James Cullison Professorship in Infectious Diseases.Charurut Somboonwit, MD, FACP, is an Associate Professor in the Division of Infectious Diseases

and International Medicine, Department of Internal Medicine, at USF Morsani School of Medicine. Her research interests include topics in general infectious diseases, and HIV and its long-term complications.Jens H. Kuhn, MD, PhD, PhD, MS, is a Principal at Tunnell Government Services, Inc. (Bethesda,

Maryland, USA) tasked to fulfill the role of Virology Lead at the NIH/NIAID Integrated Research Facility at Fort Detrick in Frederick, Maryland, USA. His research interests include high-consequence (BSL-4) pathogen research, biodefense, and medical countermeasure development.

在桿狀病毒表現系統中建立細胞融合技術以發展抗立百病毒之藥物篩選平台

為了解決bsl-4的問題,作者張慧英 這樣論述:

立百病毒(Nipah virus, NiV)為一高致病性人畜共患病毒,最早於1999年在馬來西亞分離出來。而至今立百病毒已經在世界上感染了650多人,且死亡率高達70%。由於其高致死率與高傳染性,迫切需要開發針對立百病毒感染的治療策略。再者,若需要使用活病毒進行治療對策開發,也較易造成研發人員的感染風險。因此,我們開發了在桿狀病毒表現系統中,利用昆蟲細胞表達立百病毒的膜蛋白,因而造成細胞融合之現象,建立對抗立百病毒之藥物篩選平台。 由立百病毒所誘發的細胞融合機制,主要有幾個蛋白質參與,包含NiV融合蛋白 (NiV F)、NiV糖蛋白(NiV G)、ephrinB2 和組織蛋白酶 L。而其中桿

狀病毒與昆蟲細胞皆有組織蛋白酶L的同源蛋白,因此實驗設計上,我們構築兩種桿狀病毒,一株為同時表達NiV F和NiV G,另一株則單純表現ephrinB2。利用西方墨點法與和免疫螢光染色分析,我們能成功地在細胞膜上表現NiV F,NiV G 和EphrinB2,然而,初步實驗卻發現共感染無法造成細胞融合現象。根據先前的研究顯示,在昆蟲細胞中,降低培養基的 pH 值和添加膽固醇可以促進細胞融合的形成。而當我們進一步額外置換較低 pH 值之培養基與添加膽固醇時,的確能成功觀察到 NiV 所誘導的細胞融合。我們利用此平台進一步篩選幾種化合物,其中包括一些多磺化萘胺化合物與蛋白酶抑製劑等。在這些化合物中

,蘇拉明(多磺化萘胺化合物)對 NiV表現出最高的融合抑製劑活性。此研究證實我們所建立由NiV誘導產生的細胞融合平台,可以作為一個安全、簡單的藥物篩選平台,用於尋找具有抗 NiV融合抑製劑特性的化合物。

以離子複合CRISPR/Cas9 質體於烷基化聚乙烯亞胺崁合人類血清白蛋白奈米粒子以基因編輯剃除PD-L1表達應用於免疫治療之研究。

為了解決bsl-4的問題,作者黃弘旭 這樣論述:

目錄致謝 II摘要 IIIAbstract IV目錄 VI表目錄 IX圖目錄 X第一章 緒論 1一、 基因療法 1(一) 病毒載體 (Viral vector) 4(二) 非病毒載體 (Non-viral vector) 8二、 白蛋白奈米顆粒 13(一) 奈米顆粒應用於藥物傳遞系統 13(二) 白蛋白介紹 15(三) 白蛋白奈米顆粒傳遞系統 16(四) 白蛋白奈米顆粒之製備方式 18三、 免疫檢查點療法 (Immune checkpoint blockade) 25四、 基因編輯系統 28(一) 鋅指核酸酶 (Zinc-finger

nucleases, ZFN) 28(二) 轉錄激活子樣效應核酸酶 (Transcription activator-like effector nucleases, TALENs) 29(三) CRISPR/Cas9 system 30五、 模式質體: pSpCas9(BB)-2A-GFP (PX458) 33六、 研究動機與目的 34第二章 實驗材料與方法 35一、 實驗材料 35二、 實驗方法 37(一) 製備硬酯化聚乙烯亞胺 371. Stearyl-Polyethylenimine (MW=600) 之合成 372. 高分子結構鑑定與分析

38(二) 製備月桂化聚乙烯亞胺 381. Lauryl-Polyethylenimine (MW=600) 之合成 382. 高分子結構鑑定與分析 39(三) 製備PD-L1靶向之CRISPR質體 391. 菌種培養、保存與質體純化 39(四) 製備去除脂肪酸人類血清白蛋白 40(五) 製備聚合物崁合白蛋白奈米顆粒及其物理特性分析 401. 奈米顆粒製備方法 402. 粒徑大小、分布及表面電荷分析 433. 膠體滯留分析 44(六) 聚合物崁合白蛋白奈米顆粒之體外細胞試驗 441. 細胞培養 442. 細胞存活率測試 453. 轉染效率

464. 基因剔除效率 47(七) 統計分析 48第三章 實驗結果與討論 49一、 Alkylated polyethylenimine合成鑑定與分析 49(一) 高分子合成 491. Steayl-polyethylenimine之鑑定與分析 502. Lauryl-Polyethylenimine之鑑定與分析 51二、 奈米顆粒之物理特性分析 53(一) 粒徑與表面電荷分析 53(二) 膠體滯留分析 55三、 奈米顆粒之體外細胞試驗 62(一) 奈米顆粒之細胞存活率試驗 62(二) 奈米顆粒之細胞轉染效率 64(三) 基因剃除效率

74第四章 結論 76第五章 參考文獻 77表目錄Table 1. America FDA approved gene therapy product (Ginn et al., 2018). 3Table 2. Viral vectors overview (Aurisicchio and Ciliberto, 2012; Buerli et al., 2007; Kay et al., 2001; Yin et al., 2014). 4Table 3. Immune Checkpoint–Blocking Antibodies Approved by the Food and

Drug Administration (Postow et al., 2018). 27Table 4. Comparison of different programmable nucleases (Kim et al., 2017). 31Table 5. Degree of Substitution of stearyl-polyethyenimine. 50Table 6. Degree of Substitution of lauryl-polyethyenimine. 52Table 7. Particle size and zetapotential of plasmi

d loaded 1%18CPEI-HSA-500CF nanoparticles. 53Table 8. Particle size and zetapotential of plasmid loaded 0.5%18CPEI-HSA-500CF nanoparticles. 54Table 9. Particle size and zetapotential of plasmid loaded 0.5%18CPEI-HAS nanoparticles. 54Table 10. Particle size and zetapotential of plasmid loaded 1%12

CPEI-HSA-500CF nanoparticles. 54Table 11. Particle size and zetapotential of plasmid loaded 1%12CPEI-HSA nanoparticles. 55Table 12. Particle size and zetapotential of plasmid loaded 0.5%12CPEI-HSA-500CF nanoparticles. 55圖目錄Figure 1. Current techniques used for gene delivery [4]. 2Figure 2. Chemi

cal structures of commonly used cationic lipids [26]. 10Figure 3. Chemical structures of commonly used cationic polymers [26]. 12Figure 4. Schematic illustration of the enhanced permeability and retention (EPR) effect in tumors [48]. 14Figure 5. Structure of human serum albumin [52]. 15Figure 6.

Uptake of albumin-paclitaxel nanoparticles is presumably mediated by the gp60 transcytosis pathway and subsequent binding to SPARC (Secreted Protein, Acidic and Rich in Cysteine) in the tumor extracellular matrix [61]. 17Figure 7. Schematic representation of desolvation method used to prepare 19F

igure 8. Schematic representation of emulsification method used to prepare albumin-based nanoparticles [66]. 20Figure 9. Schematic representation of thermal gelation method used to prepare albumin-based nanoparticles [66]. 21Figure 10. Schematic representation of nano-spray drying method used to

22Figure 11. Schematic representation of nano-spray drying method used to 23Figure 12. Schematic representation of nano-spray drying method used to 24Figure 13. Mechanism of action of immune checkpoint inhibitors [78]. 26Figure 14. Structures of Zinc-finger nucleases [88]. 29Figure 15. Structure

s of Transcription activator-like effector nucleases [88]. 30Figure 16. Molecular mechanism of the CRISPR/Cas9 genome editing system [99]. 32Figure 17. pSpCas9(BB)-2A-GFP (PX458) Full sequence map [104]. 33Figure 18. Synthesis of alkyl-polyethylenimine [104]. 37Figure 19. Tree chat of whole stud

y. 48Figure 20. Sulfo-NHS plus EDC (carbodiimide) crosslinking reaction scheme [105]. 49Figure 21. 1H-NMR spectrum of stearyl-polyethyenimine. 51Figure 22. 1H-NMR spectrum of lauryl-polyethyenimine. 52Figure 23. Gel retardation assay of 1%18CPEI-HSA-500CF nanoparticles. 56Figure 24. Gel retarda

tion assay of 0.5%18CPEI-HSA-500CF nanoparticles. 57Figure 25. Gel retardation assay of 0.5%18CPEI-HSA nanoparticles. 58Figure 26. Gel retardation assay of 1%12CPEI-HSA-500CF nanoparticles. 59Figure 27. Gel retardation assay of 1%12CPEI-HSA nanoparticles. 60Figure 28. Gel retardation assay of 0.

5%12CPEI-HSA-500CF nanoparticles. 61Figure 29. Cell viability assay of CT26 cells treated with different plasmid ratios. 63Figure 30. Fluorescence microscopic images (GFP encoded) of CT26 cells treated with 1%18CPEI-HSA-500CF nanoparticles bound to various amounts of the plasmid. Nuclei (blue) and

GFP (green). 66Figure 31. Fluorescence microscopic images (GFP encoded) of CT26 cells treated with 0.5%18CPEI-HSA-500CF nanoparticles bound to various amounts of the plasmid. Nuclei (blue) and GFP (green). 67Figure 32. Fluorescence microscopic images (GFP encoded) of CT26 cells treated with 0.5%1

8CPEI-HSA nanoparticles bound to various amounts of the plasmid. Nuclei (blue) and GFP (green). 68Figure 33. Fluorescence microscopic images (GFP encoded) of CT26 cells treated with 1%12CPEI-HSA-500CF nanoparticles bound to various amounts of the plasmid. Nuclei (blue) and GFP (green). 69Figure 34

. Fluorescence microscopic images (GFP encoded) of CT26 cells treated with 1%12CPEI-HSA nanoparticles bound to various amounts of the plasmid. Nuclei (blue) and GFP (green). 70Figure 35. Fluorescence microscopic images (GFP encoded) of CT26 cells treated with 0.5%12CPEI-HSA-500CF nanoparticles boun

d to various amounts of the plasmid. Nuclei (blue) and GFP (green). 71Figure 36. Flow cytometric analysis of GFP expresion in CT-26 cells.. 73Figure 37. Flow cytometric analysis of PD-L1-negative expression in CT26 cells treated with nanoparticles noncovalently bound to the plasmid with/without si

RNA. 75