broadband vs fiber的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列問答集和資訊懶人包

broadband vs fiber的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦Sackinger, Eduard寫的 Analysis and Design of Transimpedance Amplifiers for Optical Receivers 可以從中找到所需的評價。

國立臺灣大學 光電工程學研究所 黃升龍所指導 桑德揚的 光譜全場光學相干斷層掃描:深度相關的人體皮膚後向散射光譜 (2021),提出broadband vs fiber關鍵因素是什麼,來自於光學同調斷層掃描、光譜學、傅立葉變換、斷層影像處理、皮膚科、磁滯、壓電轉換器、前饋磁滯補償。

而第二篇論文逢甲大學 光電科學與工程學系 葉建宏所指導 王柏尹的 具彈性應用的分時及分波多工被動光纖網路之設計 (2021),提出因為有 偏振多工、分波多工、被動式光網路、斷點保護、自由空間光通訊的重點而找出了 broadband vs fiber的解答。

接下來讓我們看這些論文和書籍都說些什麼吧:

除了broadband vs fiber,大家也想知道這些:

Analysis and Design of Transimpedance Amplifiers for Optical Receivers

為了解決broadband vs fiber的問題,作者Sackinger, Eduard 這樣論述:

An up-to-date, comprehensive guide for advanced electrical engineering studentsand electrical engineers working in the IC and optical industriesThis book covers the major transimpedance amplifier (TIA) topologies and their circuit implementations for optical receivers. This includes the shunt-feedba

ck TIA, common-base TIA, common-gate TIA, regulated-cascode TIA, distributed-amplifier TIA, nonresistive feedback TIA, current-mode TIA, burst-mode TIA, and analog-receiver TIA. The noise, transimpedance, and other performance parameters of these circuits are analyzed and optimized. Topics of intere

st include post amplifiers, differential vs. single-ended TIAs, DC input current control, and adaptive transimpedance. The book features real-world examples of TIA circuits for a variety of receivers (direct detection, coherent, burst-mode, etc.) implemented in a broad array of technologies (HBT, Bi

CMOS, CMOS, etc.). The book begins with an introduction to optical communication systems, signals, and standards. It then moves on to discussions of optical fiber and photodetectors. This discussion includes p-i-n photodetectors; avalanche photodetectors (APD); optically preamplified detectors; inte

grated detectors, including detectors for silicon photonics; and detectors for phase-modulated signals, including coherent detectors. This is followed by coverage of the optical receiver at the system level: the relationship between noise, sensitivity, optical signal-to-noise ratio (OSNR), and bit-e

rror rate (BER) is explained; receiver impairments, such as intersymbol interference (ISI), are covered. In addition, the author presents TIA specifications and illustrates them with example values from recent product data sheets. The book also includes: Many numerical examples throughout that help

make the material more concrete for readersReal-world product examples that show the performance of actual IC designsChapter summaries that highlight the key pointsProblems and their solutions for readers who want to practice and deepen their understanding of the materialAppendices that cover commun

ication signals, eye diagrams, timing jitter, nonlinearity, adaptive equalizers, decision point control, forward error correction (FEC), and second-order low-pass transfer functionsAnalysis and Design of Transimpedance Amplifiers for OpticalReceivers belongs on the reference shelves of every electri

cal engineer working in the IC and optical industries. It also can serve as a textbook for upper-level undergraduates and graduate students studying integrated circuit design and optical communication. EDUARD SÄCKINGER, PhD, is Principal Analog Engineer at MACOM Technology Solutions, USA. For mo

re than ten years, Dr. Säckinger worked at Bell Laboratories (AT&T and Lucent Technologies). After that, he joined Agere Systems (a Lucent spin-off), Conexant Systems, and Ikanos Communications (through an acquisition). He has conducted seminars on broadband circuits for optical fiber communication

at Agere Systems, Lucent Technologies, MEAD Microelectronics, and the VLSI Symposium. He served as an Associate Editor for IEEE Journal of Solid-State Circuits for six years. He is the author of the book Broadband Circuits for Optical Fiber Communication.

光譜全場光學相干斷層掃描:深度相關的人體皮膚後向散射光譜

為了解決broadband vs fiber的問題,作者桑德揚 這樣論述:

從基於 Mirau 的高解析全域式光學同調斷層掃描 (FF-OCT) 中提取的背向散射光譜數據,在生物醫學中具有潛在的應用。高品質的自製摻鈦藍寶石單纖衣晶體光纖寬帶光源在 OCT 成像中以高速成像提供了對體內皮膚組織的更深穿透,具有細胞解析度。驅動 Mirau 干涉儀的壓電轉換器 (PZT) 的磁滯非線性在 OCT 掃描期間表現出位移不準確。這種不準確性顯著影響了從 OCT 系統中提取的深度相關頻譜。由有效的前饋補償,實現了 PZT 磁滯的高階線性化。實驗結果表明,多項式算子參數少、建模精度高、輸入輸出關係平滑,優於 Prandtl-Ishlinskii (PI)模型。因此,在 FF-OCT

系統中實施多項式磁滯模型,以實現超高 PZT精準定位,從而可以準確獲得背向散射光譜。FF-OCT 系統的性能通過對體外靛氰綠 (ICG) 著色顆粒和非著色微米球的成像進行了測試和驗證。光譜信號是通過短時傅立葉變換(STFT)從原始干涉信號中獲得的,在780 nm 的波長窗口,4-µm樣本長度之光譜解析度為 54.42 nm。來自 ICG 顆粒的背向散射光譜隨著濃度的增加表現出最大強度和藍移,而微米球導致強度低於 ICG。由ICG 和微米球光譜的比較結果,驗證了這種光譜分析方法。為進一步驗證此光譜分析於活體前臂皮膚的三維斷層掃描應用,本研究提取了不同深度的皮膚組織的光譜特徵。由於複雜的皮膚解剖

結構和色素吸收,本研究發現體內皮膚的反向散射光譜顯示出與深度相關的光譜偏移和帶寬變化。具有高速、高對比度之細胞解析度三維斷層掃描成像和光譜提取能力的OCT 成像有助於識別組織成分的分子/化學成分和光學特性,由體內深層組織反向散射的這種高速光譜採集,未來可應用於臨床環境中的疾病診斷。

具彈性應用的分時及分波多工被動光纖網路之設計

為了解決broadband vs fiber的問題,作者王柏尹 這樣論述:

在本碩士論文中,我們共提出了兩個有關於被動光纖網路(Passive Optical Network, PON)的傳輸系統架構與設計。在第一個部分的研究裡,我們提出了一種具對稱偏的振多工(Polarization Division Multiplexing,PDM)之分波多工被動式光纖網路(Wavelength Division Multiplexed Passive Optical Network,WDM-PON)系統架構,此提出之系統還可用於支援長距離光纖傳輸的光纖延伸(Fiber To The Extension,FTTE)的應用。基於現有 PON 網路中的 2×N WDM 分光多工器的

輸出特性,可用以避免雷利後向散射(Rayleigh Backscattering,RB) 引起的拍頻雜訊干擾。根據 PDM 的特性,每個 WDM 波長可以分為兩個正交偏振(Polx 和 Poly)訊號通道,其可用以承載 25 Gbit/s和 10 Gbit/s 開關鍵控(On-Off Keying,OOK)下傳流量,在沒有任何色散補償機制下,分別用於 25 km 和 105 km 長的單模光纖(Single-Mode Fiber,SMF)傳輸。在第二個部分的研究裡,我們設計並應用基於光纖和自由空間光通訊(Free Space Optical Communication,FSO)的斷點保護架構

來防止光纖斷點造成的斷訊問題,於此我們提出了一種基於長距離星形環狀的分時分波(Time and Wavelength Division Multiplexed,TWDM)PON系統。 於此,新的基於光纖和 FSO 的光網路單元(Optical Network Unit,ONU)模組被設計在 PON 系統中,用以實現自我光纖保護操作。 因此,相鄰的 ONU間會經由切換光纖或 是FSO 的傳輸路徑來重新信行信號連接。 因此,4×10 Gbit/s 下傳訊號和 10 Gbit/s 上傳訊號都可以達到 70 km的光纖傳輸和一段自由無線空間的傳輸,此信號的傳輸亦無需進行光放大和色散補償的操作。 此外,

我們還分析和討論所提出的 TWDM-PON 接取網路中分光比和 FSO 傳輸長度的關係。