bar 500ml價錢的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列問答集和資訊懶人包

另外網站【bar 500ml價錢】麒麟Bar啤酒(罐裝)500ml*24-... 第1頁/ 共1頁也說明:麒麟Ba... 麒麟Bar啤酒(罐裝) 500ml*24 ,2017年10月7日— 【啤酒介紹】. 名稱:KRIN Bar Beer 麒麟霸啤酒. 種類:啤酒類售價:46元容量:500 ml. 度數:4.5度.

長庚大學 化工與材料工程學系 劉繼賢所指導 Pravanjan Malla的 電化學結合免疫磁性粒子與奈米複合物碳電極之副甲狀腺素和病毒棘蛋白偵測 (2021),提出bar 500ml價錢關鍵因素是什麼,來自於副甲狀腺素、網版印刷電極、多壁奈米碳管、磁性粒子、新型冠狀病毒。

而第二篇論文高雄醫學大學 臨床醫學研究所博士班 吳明蒼、謝慧敏所指導 蔡惠如的 塑化劑與三聚氰胺共暴露對於易感性族群的早期腎臟損傷及氧化傷害之影響研究 (2021),提出因為有 鄰苯二甲酸酯、塑化劑、三聚氰胺、尿液微白蛋白尿、腎臟傷害、氧化傷害的重點而找出了 bar 500ml價錢的解答。

最後網站麒麟(霸)啤酒500ml - 詢價車: 賞禮有限公司則補充:建議售價, 850元. 詳細介紹; 發信詢價. 詳細介紹. 產地:中國, 容量:500 ml. 酒精度:4.5%, 包裝:24罐(箱). 麒麟霸啤酒傳承麒麟的優質釀酒技術,濃厚的酒花清香、酒體柔和 ...

接下來讓我們看這些論文和書籍都說些什麼吧:

除了bar 500ml價錢,大家也想知道這些:

電化學結合免疫磁性粒子與奈米複合物碳電極之副甲狀腺素和病毒棘蛋白偵測

為了解決bar 500ml價錢的問題,作者Pravanjan Malla 這樣論述:

CONTENTSChinese Abstract.………...…………………………………...………...……...……iEnglish Abstract ……………………………………………...……………………iiiContents……….……………………………………………...…………....…...…..vList of figures….……………………………………………...……………….…..xiList of tables…...……………………………………………......…………....…. xxiList of abbreviations……………………...………………

…...……..…...……..xxiii1. CHAPTER 1- INTRODUCTION………….……..…….…..11.1 Parathyroid hormone……….…..…….…….…..11.1.1 Synthesis and degradation……….…..……….……….….….21.1.2 Secretion and regulation……….…………...…..…31.2 PTH assay…………………..….…...……..51.2.1 First-generation PTH assay……………..….…61.2.2 Second generation

assay (intact PTH assays) ……….……..…71.2.3 Third generation assay (Bioactive PTH (1-84) assay) ………,….…..…...71.3 Clinical uses…………..……………...……81.4. Electrochemical sensor……………………91.4.1 Biosensor……….………………..….......91.4.2 Immunosensor……….……………….……….91.4.3 Enzyme immunoassay or enzyme-linked immunosorb

ent assay (ELISA)….101.4.4 Point-of-care test (POCT) ……….………….…….……101.5 Screen-printed carbon electrode…………….…111.6 Electrochemical measurement technique ………….….…121.6.1 Cyclic voltammetry……….…………….……..…….…131.6.2 Differential pulse voltammetry……….…….…….…....……131.6.3 Square wave voltammetry……….………

….…….…...……141.6.4 Electrochemical impedance spectroscopy……….……..……151.7 Nanomaterials……….………………..…….…181.7.1 Carbon-based nanomaterials……….…………....……..……201.7.2 Magnetic nanoparticles……….……………..…....211.8 Novel Coronavirus……………….….….…..…221.9 Goal of the work……………………....…232. CHAPTER 2- MATERIALS A

ND METHODS………….24PART-1 (Label-free parathyroid hormone immunosensor using nanocompositemodified carbon electrode).……..……...……...……….242.1 Chemical and reagents……….……………..…242.2 Electrodeposition of MWCNT-AuNP on SPCE working surface….……262.3 Immobilization of the immunosensor……….……………262.4 Calibrat

ion of PTH……….………………..……..…272.5 Characterization of SPCE electrochemical properties……….…….….…272.5.1 Measurement of electron transfer rate constant (Ks) by CV and EIS….…...272.5.2 Calculation of effective surface area……….………….....…282.5.3 Impedance analysis by EIS……….……………...….…292.5.4 EIS estimati

on of association constant between PTH and antibody……...…302.6 Statistical analysis……….…………….……...….…30PART-2 (Electrochemical immunoassay for serum parathyroid hormone usingscreen-printed carbon electrode and magnetic beads) ………...…..312.7 Modification of MBs………………….….……312.8 Fabrication of the ele

ctrochemical immunosensor……….……...…….…312.9 Optimization of HRP dilution and antibody concentration……….…322.10 Optimization of analytical procedure and signal recording…….........….33PART-3 (Voltammetric biosensor for coronavirus spike protein using magnetic beadand screen-printed electrode for poin

t-of-care diagnostics) ……….342.11 Immobilization of MB-APBA-Ab-HRP……….…….....……342.12 Detection of the COVID-19 spike protein……….………...…352.13 Optimization procedure and signal definition……….……….……352.14 SWV and EIS measurements procedure……….……….……362.15 Colorimetric assay……….…………….......…373. CHAPT

ER 3-RESULTS AND DISCUSSION……..……….…38PART-13.1 Characterization of prepared SPCEs……….………...…….…….…383.1.1 Microscopic surface characterization by FE-SEM……….…….…383.1.2 Transmission electron microscope and Raman spectroscopy…….……413.2 Electrochemical characterization of SPCE modification……….…….…443.

3 EIS characterization of modified SPCEs………….......…473.4 Effects of capture antibody concentration on PTH detection……...….…493.5 PTH detection using nanocomposite modified immunosensor…….……513.5.1 Estimation of association constant between the antibody and PTH antigen onSPCE……….……………………...……513.5.2

PTH detection using the EIS method……….…………..……513.5.3. PTH detection using the CV method………….….……533.6 Interference assay and storage stability of the immunosensor…….…..…55*Summary of Part-1…………………….……59PART-23.7 Characterization of modified MBs……………..……...…593.8 Parameter optimization of SWV measu

rement……….…….…623.9 Optimization of antibody and HRP concentration using SWV……….…643.10 Electrochemical characterization of modified MBs…………693.11 PTH detection using SWV and EIS methods………….….…703.12 Interference test……………………733.13 Storage and stability test………………...……743.14 Electron transfer rate

constant of MB-APBA-HRP-Ab……..….…77*Summary of Part-2………………......…….78PART-33.15 Principle of SARS-CoV-2 biosensor……….…....…..…793.16 Characterization of modified MBs……………….…..…803.16.1 Microscopic characterization of modified MBs……………803.16.2 Thermogravimetric analysis and magnetic hysteresis of MB

-NH2 andMB/APBA……………………….……..……833.16.3 Electrochemical characterization……………..…843.17 Detection of Spike protein……………...…..…..…873.18 Interference test…………………..…......923.19 Stability and storage test…………………..….923.20 Optimization of the experimental parameter……….…..…....943.20.1 Optimization of HR

P and antibody dilution…………….....943.20.2 Optimization of incubation time and H2O2/HQ concentration.....................953.20.3 Optimization of the MB volume and reaction time………….…963.20.4 Optimization of blocking reagent………………...….964. CHAPTER 4-CONCLUSION……………….…..…100REFERENCE …………………...…….101A

PPENDIX……………...……………..…..……114A1. Experimental section…….…………..…114A1.1 DNA sequences………………….……114A.1.2 Apparatus………………………..…...114A1.3 Synthesis of graphene oxide………………..115A1.4 Reduction of graphene oxide…………….......…..116A1.5 Synthesis of Au-r-GO-MNP-COOH……………...…..116A1.6 Modification of Au-r-GO

-MNP…………………116A1.7 Detection of COVID-19……………………117A1.8 Process of electrochemical measurement……………..117A1.9 Optimization of measuring parameters and signal definition……118A2. RESULTS………….……………...……...…119A2.1 Characterization of material…...………………120A2.1.1 SEM characterization………………...………..120A2.1.

2 Electrochemical characterizations………...……......121A2.2 Optimization of experimental parameter…………..…123A2.3 Specificity test of target DNA sequence……….….….124A2.4 Analytical performance of DNA sensor ………….….124Summary…………………………...….127Curriculum vitae ……………………...……128List of FiguresFig 1.1 Structu

re and composition of human parathyroid hormone …….….……...…8Fig 1.2 Overview of screen-printed electrode………...….….….…12Fig 1.4 (A) Potential waveform and (B) typical differential pulse voltammetry.…14Fig 1.5 Typical waveform of square wave voltammetry………….16Fig 1.6 Schematic diagram showing componen

t of AC of impedance……….16Fig 1.7 Randles circuit model for EIS analysis……….………17Fig 1.8 Electrochemical impedance spectra for electrochemical immunoassay forPTH detection……….……...………………..19Fig 1.9 Schematic illustration of the classification of nanostructure materials……20Fig 1.10 An overview of nan

omaterials application in different fields. ……..……23Fig 1.11 Structure of novel coronavirus SAR-CoV-2……..…….…...…23Fig 2.1 Schematic representation of fabrication of PTH immunosensor….…28Fig 2.2 Schematic diagram showing the fabrication process and the immunoelectrochemical reaction of magneto immun

osensor. ……….……….…33Fig 2.3 Schematic illustration for SARS-CoV-2 Spike protein detection using MBbased electrochemical biosensor. ……….……………...……35Fig 2.4 Schematic representation of S/B calculation.……….……….…37Fig 3.1 FE-SEM image of bare and modified SPCEs: (A) Bare, (B) AuNP/SPCE, (C)MWCNT-AuNP/SP

CE, with 1.0µm scale bar. Energy dispersive X-Rayspectroscopy results from the samples: (D) Bare SPCE, (E) AuNP/SPCE, (F)MWCNT-AuNP/SPCE.……….……………..……39Fig 3.2 FTIR spectra of bare SPCE (A), MWCNT/SPCE (B), AuNP/SPCE (C) andBSA/SPCE(D).……….…………..……….…40Fig 3.3 The microscopic images of the SPCE surf

aces by metallurgical microscope:(A) bare SPCE, (B) AuNP/SPCE, (C) MWCNT-AuNP/SPCE. Contact anglemeasurement on the modified SPCE surfaces: (D) bare SPCE, (E) AuNP/SPCE, (F)MWCNT-AuNP/SPCE……….……………...……41Fig 3.4 TEM images of nanocomposites in-situ synthesized on SPCE. (A) MWCNT,(B) MWCNT- AuNP, (C)

the size distribution of the prepared AuNP on SPCE usingthe deposition potential of -200 mV for 300 sec. (D) Raman spectra of bare SPCE,AuNP/SPCE, MWCNT-AuNP/SPCE. The scale bar was 100nm. ……….……………………….……43Fig 3.5 Chronoamperometric diagrams for assessing effects of deposition potentialusing 10 mM

of HAuCl4 (A) and effects of HAuCl4 concentration at -200mV (B) forelectrochemical deposition on SPCEs for 300 sec. In the inset, the linear response isshown by fixing the potential -200 mV for 300 sec.……….………44Fig 3.6 (A)Cyclic voltammogram and (B) ΔEp of SPCEs deposited bynanocomposite using diff

erent MWCNT-AuNP concentrations. Differentconcentrations of MWCNT (10~100 μg/mL) in 10 mM of HAuCl4 solution weretested at -200 mV for 300 sec. ……….……………….…45Fig 3.7 (A) Cyclic voltammogram of MWCNT-AuNP/SPCE measured in potentialwindow of -500 to +600 mV vs. Ag pseudo-reference electrode at differe

nt scanrates (from inner to outer) :10, 20, 30, 40, 50, 60, 70, 80, 90, 100 mV s-1. (B) effectof scan rate on the anodic and cathodic peak current. (C)linear sweep voltammogram(LSV) of bare SPCE, AuNP/SPCE, MWCNT-AuNP/SPCE. (D) peak current andIpa/Ipc ratio of different SPCEs by LSV using 3mM ferric

yanide inPBS. …………………………46Fig 3.8 (A) Impedance results of different modified SPCEs using 3mM ferricyanidein PBS. EIS was run with amplitude 100 mV with amplitude 100mV, frequencyrange 1-1000 Hz, initial potential 50 mV. (B) Histogram of charge transfer resistanceof different SPCEs including bare SP

CE, MWCNT-AuNP/SPCE, Ab1-MWCNTAuNP/SPCE, FBS-Ab1-MWCNT-AuNP/SPCE, PTH-FBS-Ab1-MWCNTAuNP/SPCE. Human serum spiked with 100 pg/mL of PTH was used. Error barrepresents the standard deviation from three repeats (n=3). ……..….…50Fig 3.9 (A) EIS effect of capture antibody loading on the biosensor and Rct s

ignal(B). Effect of coating duration on EIS (C) and Rct signal (D) using 110 ng/mLantibody. Different antibody dilutions (1110, 222, 110, 55 ng/mL) were used toimmobilize the SPCE surface. The impedance spectra were obtained using 100pg/mL PTH concentration in all these experiments. Error bar repres

ents the standarddeviation from three repeats (n=3). …………….…51Fig 3.10 (A) Impedance spectra, (B) standard curve of PTH dosage (1~300 pg mL1) in human serum using the immunosensor. Impedance results for the measurementof the association constant using human serum spiked with PTH (C). (D) Cyclicvolta

mmetry current signal, (E) standard curve of PTH dosage (0~300 pg/mL) inhuman serum. The EIS and CV signal was obtained by placing 100 µL of3mM potassium ferricyanide in PBS. EIS was run with amplitude 100 mV,frequency range 1-1000 Hz, and initial potential 50 mV and CV run with potentialrange (-0.5

~0.6V) with 50 mV s-1scan rate. Error bar represents the standarddeviation from three repeats (n=3). ……….…………….55Fig 3.11 (A) Impedance spectra of immunosensor under interfering compounds at 1mg/mL, (B) histogram showing the relative Rct value. EIS was run with amplitude100 mV, frequency range 1-100

0 Hz, and initial potential 50 mV. The PTHconcentration in the interference test was 100 pg/mL. Error bar represents thestandard deviation from three repeats (n=3) …………….……..…58Fig 3.12 Stability test using fabricated immunosensor after 36-day storage: (A) CVsignal, (B) relative maximal current. The

current of Day-0 SPCE was represented as100%. (C) EIS signal, (D) relative Rct. The Rct of Day-0 SPCE was represented as100%. CV was performed over −500~+600 mV at 50 to 100 mV s -1using 3mMferricyanide in PBS. EIS signal was obtained by placing 100 µL of 3mM ferricyanidein PBS. EIS was run with am

plitude 100 mV, frequency range 1-1000 Hz, and initialpotential 50 mV. The tested PTH concentration was 100 pg/mL. * indicatedsignificantly different compared to Day-1 result at 5% level using a one-tailed t-test.The peak current (14.15 ±1.96 μA) of Day-1 SPCE was represented as 100% for theCV signa

l. The Rct (13496 ± 251 Ω) of Day-1 SPCE was represented as 100% forthe EIS signal. Error bar represents the standard deviation from three repeats(n=3). …………………………...…59Fig 3.13 SEM images of (A) pure APBA, (B) MB, (C) MB-APBA conjugate, with2.0µm scale bar…………………………61Fig 3.14 (A) Amount of APBA ads

orbed during conjugation of MB and APBA, (B)TMB assay of different dilution of HRP with MB-APBA. ………63Fig 3.15 (A) FTIR characterization, (B) TGA analysis of MB, and MBAPBA…………………………...…63Fig 3.16 Parameter optimization of SWV (A) increment time (B) pulse period. Theincrement range (5-20 ms) and pul

se range (100-500 ms) were tested. The SWVsignals were obtained using 0 and 100 pg mL-1 PTH concentrations. ΔI100 wasconsidered as signal and ΔI0 was blank. S/B ratio = ΔI100/ΔI0,n=3. …………………………….…64Fig 3.17 Optimization of (A) HRP dilution, (B) antibody loading on MB-APBA.SWV was run with amplitude

75 mV, pulse period 100 mV, and potential range (200mV~-400 mV). The antibody concentration 250ng mL-1 was selected during theHRP test (6A) and 200× HRP was selected for Ab-HRP optimization (6B). TheSWV signals were obtained using 0 and 100 pg mL-1 PTH concentrations. ΔI100 wasconsidered as signal

and ΔI0 was blank. S/B ratio = ΔI100/ΔI0,n=3. …………………………….…65Fig 3.18 (A) Optimization of incubation time of antibody and (B) hydroquinone andhydrogen peroxide concentration. n=3. ………...………65Fig 3.19 Optimization of kinetic parameter (A) effect of MB volume and (B)Michaelis-Menton constant Km. Effec

t of MB volume on Kcat and Km wasevaluated using 250 ng mL-1antibody loading. Different MB volumes (1, 3, 5, 7µL)were used to load on the working surface of SPE. ……………68Fig 3.20 Evaluation of different blocking reagents using (A)SWV signal and (B)DPV signal. All the blocking reagents are at a concen

tration of5%.…………………………...……69Fig 3.21 (A) Optimization of incubation time of MB. SWV was run with amplitude75 mV, pulse period 100 mV, and initial potential (200 mV~-400 mV). The SWVsignal was obtained using 100 pg mL-1 PTH concentration in this experiment. Errorbar represents the standard deviatio

n from three repeats (n=3). ……...…69Fig 3.22 (A) SWV currents of different MBs in the potential range (200 mV~-400mV), (B) histogram of SWV peak current using different MBs, (C) Impedancespectra of different MBs on bare SPEs (D) histogram of charge transfer resistanceusing different MBs. SWV was run

with amplitude 75 mV, pulse period 100 mV,and potential range (200 mV~-400 mV) using 5mM HQ+H2O2. Nyquist plots wererecorded on bare SPEs by 3 mM ferricyanide in PBS with amplitude 100 mV,frequency range 1~1000 Hz, initial potential 50 mV. Human serum spiked with 100pg mL-1 of PTH was used. n =3. …

………….…………71Fig 3.23 (A) SWV responses of the proposed immunosensor in differentconcentrations of PTH in 0.1 M pH 7.0 PBS containing 5mM HQ+H2O2, scanningfrom 200 mV to -400 mV with an amplitude of 75 mV s−1, a pulse period of 100msand (B) Calibration curve for PTH determination. (C) Nyquist curves r

ecorded in asolution of 0.1 M PBS containing 3 mM ferricyanide with applied potential was 0.05V at the frequency range of 1-1000 Hz and (D) EIS standard curve ofPTH…...………………………...…73Fig 3.24 SWV histogram of the fabricated immunosensor (MB-APBA-HRP-AbPEG) under the interfering compounds at 1mg mL -

1. The tested PTH concentrationin human serum was 100 pg mL-1. n =3. …………….………75Fig 3.25 Stability test of the immunosensor after 35-day storage at 4°C. SWV wasrun with amplitude 75 mV, pulse period 100 mV, and initial potential (200 mV~-400 mV) using 5mM HQ+H2O2. The tested PTH concentration was 10

0 pg mL1. …………………………….……77Fig 3.26 (A) Cyclic voltammograms (CV) of MB-APBA-HRP-Ab on SPE, (B) CVof SPE alone, (C) linear relationship of the square root of scan rate on the anodicpeak currents using 3 mM ferricyanide in PBS. CV measured in potential windowof -500 to +600 mV vs. Ag pseudo-reference

electrode at different scan rates (10,30, 50, 70, 100 mV s-1). ……………………..……78Fig 3.27 Schematic illustration for Spike protein detection using the MB-basedelectrochemical immunosensor.……………….……..…81Fig 3.28 SEM images of (A)MB-NH2, (B)MB/APBA, (C)MB/APBA/Ab-HRP,(D)MB/APBA/Ab-HRP/GLU/Spike protein wi

th scale bar: 1 µm, (E) sizedistribution of modified MBs…………………...…82Fig 3.29 Comparison of (A)APBA conjugated on two kinds of MBs, (B) horseradishperoxidase activity on two kinds of MBs using TMB assay. ……….….……83Fig 3.30 TEM images of (A)MB-NH2 (B)MB/APBA (C)MB/APBA/Ab-HRP(D)MB/APBA/Ab-HRP/GLU/Spi

ke protein with 0.5µm scale bar……..……..….84Fig 3.31 (A) Thermogravimetric analysis of modified MBs, (B) magnetic hysteresisof MB-NH2 and MB/APBA…………………...……..…85Fig 3.32 (A) Cyclic voltammogram of different MBs during modification. (B) peakcurrents and Ipa/Ipc ratio of different MBs on SPEs by using

3 mM ferricyanide inPBS. CV measured in the potential window of -500 to 600 mV using Ag pseudoreference electrode at a scan rate of 50 mV s-1. (C) impedance results of differentmodified MBs using 3 mM ferricyanide in PBS. EIS was run with amplitude 100mV, frequency range 1~1000 Hz, initial potentia

l 200 mV. (D) histogram of chargetransfer resistance of different MBs including PBS, MB-NH2, MB/APBA,MB/APBA/Ab-HRP on bare SPE. Error bar represents the standard deviation fromthree repeats (n =3). …………........................................................87Fig 3.33 Square wave voltammetry signal

s generated from SARS-CoV-2 Spikeprotein spiked in (A) saliva, (B) urine, (C) serum by varying Spike proteinconcentrations. Calibration curves based on peak currents from (D) saliva, (E) urine,(F) serum using 30-min incubation of Spike protein with MBs. Each data pointrepresents the mean ± SD of thr

ee separate measurements obtained using the sameSPE. Detection was carried out on the working surface of SPE by placing an externalmagnet by loading 5 µL of sample and 5 seconds of accumulationtime. ……………………….....…...89Fig 3.34 Standard curve of Spike protein concentration (3.125~200 ng mL−1) insali

va using the ELISA kit. …………………...…...91Fig 3. 35 Comparison of standard curves of MB-based electrochemical biosensorand the colorimetric TMB assay. The spike protein dissolved in humanserum. ………………………..…....91Fig 3.36 (A)Impedance results for the measurement of the association constant usingSpike p

rotein (B) standard curve of △RCT(Ci)/RCT(C0) and Spike proteinconcentration. ………………………..……....92Fig 3.37 (A)Impedance results for the measurement of the association constant usingSpike protein (B) standard curve of △RCT(Ci)/RCT(C0) and Spike proteinconcentration. ……………………..…....93Fig 3.38 Stability

tests of (A) MB/APBA and (B) MB/APBA/Ab-HRP/GLU after49-day storage at 4°C. SWV was run with amplitude 75 mV, pulse period 100 mV,and initial potential (-400 mV ~ 200 mV) using 5 mM H2O2/HQ. The tested Spikeprotein concentration was 10 ng mL -1. ……………..….…...94Fig 3.39 Optimization of (A) HRP fold,

(B) antibody dilution, (C) incubation timeof antibody and MBs, (D) ratio of hydroquinone and hydrogen peroxide, (E) MBloading volume, (F) reaction time of MB with H2O2/HQ. SWV currents weregenerated from serum samples spiked with Spike protein at 0 and 10 ng mL-1 andcorresponding S/B ratios using i

mmunosensors. ΔI10 was considered as signal andΔI0 was blank. S/B ratio = ΔI10/ΔI0, n=3………………..……97Fig 3.40 Evaluation of blocking agents on the signal of signal-to-blank ratio usingthe SWV methods (n =3). The antibody concentration 100× and 100× HRP wereselected for this test. The SWV signals were

obtained using 0 and 10 ng mL-1 Spikeprotein concentrations. ΔI10 was considered as a signal and ΔI0 was a blank. S/B ratio= ΔI10/ΔI0, n=3. All the blocking reagents are at a concentration of 5%..................90Fig 3.41 (A) Optimization of APBA concentration, the (B) effect of antibody-HRPwith TM

B on activity, (C) effect of Ab-HRP incubation time, (D) optimization ofincubation time of Spike protein…………………100Fig A1 Schematic illustration of the electrochemical genosensor for the detection ofSARS-CoV-2……………………….…119Fig A2 SEM image of (A) graphene. (B) r-GO, (C) r-GO-MNP-COOH (D) r-GOMNP-COOH

(E) MNP-COOH and (F, G, H, I, J) relative EDX spectrumrespectively. All the images were taken with a scale bar of 2.00 µm………120Fig A3 (A) Raman spectra analysis of MNP-COOH, r-GO-MNP, Au-r-GO-MNP.(B) thermal analysis of MNP-COOH, r-GO-MNP, Au-r-GO-MNP………...121Fig A4(A) Cyclic voltammetry step-by-st

ep modification of MNP (B) the bardiagram represents relative peak current, (C) electrochemical impedancespectroscopy during each step modification, (D) relative Rct value. All theelectrochemical measurement was performed by using Autolab. Where (a) representbare, b) Au-r-GO-MNP, c) Au-r-GO-MNP/N2R-

NH2/BSA, d) Au-r-GO-MNP/N2RNH2/BSA/N2R+N3R/N3-biotin/HRP respectively………….122Fig A5(A) Optimization of captured sequence N2R-NH2 concentration (B) detectionsequence N3R-biotin concentration (C) incubation time of hybridization….123Fig A6(A) Comparison of specificity of designed genosensor with ds-DN

A and ssDNA. (B) comparison of non-target GFP and ss-DNA………….124Fig A7(A) Square wave voltammetry response of genosensor to differentconcentration of target complementary sequence (5*10-9~5*10-2 nM) in humansaliva, (B) the linear calibration curve plotted of peak current vs. the logarithm ofthe ss-D

NA concentration (C) SWV response different concentration ofcomplementary sequence dissolved in human urine, (D) relative standardcurve………………………….….125List of tablesTable 1 Chemicals and reagents list……….…………...…….25Table 2 Apparatus list…………………..…….26Table 3 Electrochemical and physicochemical char

acteristics of the modifiedSPCEs ……….……………………47Table 4 Determination of Rs, Rct, Cdl from EIS signal shown in Fig 3.8 usingZsimpwin software………………….…….…49Table 5 Recovery of this impedimetric and amperometric immunosensor versusELISA in actual sample…………………...…….…53Table 6 Comparison of the proposed

PTH immunosensor performance with theprevious methods……….……………………56Table 7 Summary of zeta potential and size of modified magnetic beads……62Table 8 Summary of optimization of experimental parameters…………67Table 9 Comparison of recovery of PTH by ELISA, SWV and EISmethods……………………….…...74Table 10 Comp

arison different PTH immunosensors in literature……….….76Table 11 Zeta size analysis of MBs……………….……83Table 12 Electrochemical characteristics of the modified MBs on bare SPE.…....88Table 13 Limit of detection of MB-based electrochemical biosensor using Spikeprotein spiked in different body fluids ……

…………...90Table 14 Comparison of recovery yield of Spike protein by SWV, EIS, and ELISAmethod………………………..…...92Table 15 Comparison of various nanomaterial-based electrochemical methods fordetection of SARS-CoV-2…………………..…….95Table 16 Summary of optimization of experimental parameters……..…99Table A1 Li

st of DNA primer sequences used in this work…….…….114Table A2 Comparison of size modified MNP captured with DNA sequence…….124Table A3 Comparison of Ks of different modified MNP captured with DNAsequence……………………….…124Table A4 Limit of detection of Geno sensor using in different bodyfluids……………………………

.124

塑化劑與三聚氰胺共暴露對於易感性族群的早期腎臟損傷及氧化傷害之影響研究

為了解決bar 500ml價錢的問題,作者蔡惠如 這樣論述:

背景:腎臟疾病為國內十大死亡原因之一,罹患腎臟疾病的民眾容易罹患心血管疾病與中風等併發症,容易進入末期腎臟病進而需要透析治療。造成腎臟疾病的原因相當複雜,除了已知因素如老化、糖尿病、高血壓的影響外,其他環境因子特別是日常生活中接觸到的塑化劑及三聚氰胺等物質逐漸受到重視,台灣於2011年5月爆發塑化劑事件,許多孩童因而長期誤食含有高劑量塑化劑,最主要包括鄰苯二甲酸二(2-乙基己基)酯(di-(2-ethylhexyl) phthalate;簡稱DEHP)等的食品及保健食品等。三聚氰胺(melamine),如同塑化劑普遍存在於日常生活環境,我們研究團隊與國家衛生研究院共同合作,針對全台184位當

時可能暴露於DEHP汙染食品的孩童(≤ 10歲)並有尿液檢體做初步分析發現,DEHP增加了兒童微量白蛋白尿的風險,同時接觸三聚氰胺可能會影響此風險。孕婦與孩童皆為易感性族群,接觸三聚氰胺或DEHP這兩種常見的有毒物質可能會對孕婦健康造成不利影響,包括腎臟損害。先前的動物研究文獻曾提出DEHP會造成腎絲球與腎小管發炎等變化,亦提出塑化劑影響腎臟功能可能是經由氧化傷害造成的,三聚氰胺會在遠端腎小管中產生結晶而造成腎結石和急性腎損傷, DEHP 和三聚氰胺可能透過相似的途徑增加腎臟的氧化傷害,進而損傷腎小球或腎小管細胞。過去的流行病學研究觀察到共同暴露DEHP和三聚氰胺可能會存在交互的不利影響,進而

增加腎臟傷害的風險。我們利用兩個資料庫,一個資料庫對象為塑化劑汙染食品申訴者群體中的兒童與青少年(「塑化劑事件申訴者之環境毒物及健康風險評估研究」,前瞻性研究),另一個資料庫對象為第三孕期孕婦(「台灣婦幼出生世代研究」,橫斷式研究),塑化劑事件申訴者之環境毒物及健康風險評估研究持續追蹤這些暴露DEHP汙染食品的孩童與青少年,觀察其早期腎臟損傷指標的變化,是否會隨著時間的推移而逆轉,並且追蹤其尿液塑化劑代謝物濃度、尿液三聚氰胺濃度、尿液氧化傷害指標的變化及其交互相關性。台灣婦幼出生世代研究則是探討第三孕期孕婦的DEHP和三聚氰胺暴露與早期腎臟傷害指標的相關性。方法:200 名曾有攝取DEHP汙染

食品的兒童及青少年(年齡< 18 歲)參加了第一輪調查(2012年8月至 2013年1月),170 名兒童與青少年參與第二輪追蹤(2014年7月至 2015年 2月),159 名兒童與青少年參與第三輪追蹤(2016年5月至 2016年10月)。在第一輪調查會使用問卷收集有關過去每日可能食用DEHP污染食品的資料來計算事件當時每日DEHP攝取量。以單次早晨第一次尿液樣本來測量塑化劑代謝物、三聚氰胺、及氧化傷害指標(malondialdehyde (MDA) and 8-oxo-2'-deoxyguanosine (8-OHdG))和早期腎臟傷害指標(微白蛋白尿, 微白蛋白與肌酸酐比值Albumi

n to Creatinine Ratio;簡稱ACR) and N-乙酰-b-氨基葡萄糖苷酶, N-acetyl-beta-D-glucosaminidase (NAG))。在2012年10月至 2015年5月期間召募受試孕婦於第三孕期接受問卷調查、身體檢查以及血液和尿液檢查。以單次早晨第一次尿液樣本測量三聚氰胺、11 種塑化劑代謝物和和早期腎臟傷害指標(ACR和NAG)。根據三種尿液 DEHP 代謝物來計算每日 DEHP 攝入量。異常微白蛋白尿被定義為尿液ACR 高於 3.5 mg/mmol。結果:使用廣義估計方程式 (Generalized estimating equation, GE

E)分析結果發現,過去塑化劑汙染食品與尿液微蛋白尿濃度有正相關,時間與尿液微蛋白尿濃度也有正相關,因此分析塑化劑汙染食品與時間的交互作用與微蛋白尿濃度的相關性發現,大多數交互作用為負相關,在過去每日DEHP 攝取量最高的組(>50 μg/kg/天)中,其在第二波追蹤調查觀察顯著負相關性(交互作用P值 = 0.014)。研究結果發現汙染食品中含DEHP愈高會增加兒童微量白蛋白尿的數值,雖此影響在第二次追蹤調查中短暫減弱,但在第三次追蹤調查中仍發現汙染食品DEHP對兒童微量白蛋白尿的影響持續存在,此外亦發現尿液三聚氰胺濃度與尿液微白蛋白尿及尿液氧化傷害指標有顯著相關。共分析了 1433 名第三孕期

的孕婦,其尿液三聚氰胺的中位數值為0.63 mg/mmol Cr 和估計的每日DEHP 攝取量為 1.84 mg/kg/day。與DEHP 攝取量第1四分位數組(1st quartile)相比,估計的 DEHP 攝取量的第4 四分位數組(4th quartile)個案的異常微白蛋白尿比例顯著增加。尿液三聚氰胺和DEHP 攝取量對於尿 ACR 和 NAG存在顯著的交互作用。結論:塑化劑與三聚氰胺為生活上常見的環境汙染物,可能影響易感性族群(包括:懷孕婦女或幼童)的腎臟功能,攝取塑化劑汙染食品的孩童與青少年應持續持續監測其腎臟功能和其他長期健康後果,孕婦也應盡量避免塑化劑及三聚氰胺等化學物質以減少

腎臟傷害的風險,我們的研究成果不僅可了解對塑化劑及三聚氰胺與腎臟影響的相關機制以增加學術新知,更可對社會人群暴露於新興環境化學物質提出風險評估之指引。