Saffron 46 ig的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列問答集和資訊懶人包

Saffron 46 ig的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦李慕盈寫的 台北最好玩:Muying帶路深度遊台北:4大主題╳30條路線╳199個景點 可以從中找到所需的評價。

另外網站絕美信義區夜景餐廳|全台最高印度料理|Saffron 番紅花46也說明:在Instagram 查看這則貼文 ... 微風南山的#Saffron46 兼具了南北印度菜色番紅花老闆特別請了印度廚師團隊把正宗印度料理帶進優雅的夜景餐廳用精緻的 ...

長庚大學 電子工程學系 陳始明所指導 Udit Narula的 超大積體電路中石墨烯化銅互聯線的製程方法研究 (2017),提出Saffron 46 ig關鍵因素是什麼,來自於ULSI互連、石墨烯合成方法、Graphenated銅、電遷移。

而第二篇論文國立中山大學 生物科學系研究所 趙大衛所指導 陳冠豪的 薑黃素對胰液所誘導肺損傷之保護效用 (2014),提出因為有 肺損傷、缺血再灌流、支氣管灌洗液、全套肺功能相關生理試驗、肺組織灌洗液中蛋白質、薑黃素、氮化壓力的重點而找出了 Saffron 46 ig的解答。

最後網站ScubaGolfer's blog - 台北外食‧ 2020 - Udn 部落格則補充:印度:Saffron 46. 在號稱「台魂法菜」領軍下,創意融合西式小餐廳 ... 好此道者有興趣歡迎看看Instagram 就是. 揮別動亂不安的2020,祝大家今年平安 ...

接下來讓我們看這些論文和書籍都說些什麼吧:

除了Saffron 46 ig,大家也想知道這些:

台北最好玩:Muying帶路深度遊台北:4大主題╳30條路線╳199個景點

為了解決Saffron 46 ig的問題,作者李慕盈 這樣論述:

踏訪台北11+1區, 感受台北來自四面八方的活力, 從老台北的復古風情,到現代台北的新潮繁華, 帶你體會新舊台北交織出的獨特韻致。   台北,你想怎麼玩?   是鑽進飛機巷近距離觀看飛機起降、   沿著深奧鐵道騎腳踏車健行、   走入寶藏巖聚落體驗藝術與人文的共生、   在西門紅樓喝喝咖啡、跳跳舞、   穿梭於大安巷弄之中嘗遍傳統美食、   或是到訪紀州庵文學森林,聽一場文學講座呢?   從這一區到那一區,無論文青派、潮流派或旅遊派,   都能在此找到專屬你的台北方程式!   本書特色   ◆4大主題╳199個景點,任你搭配任你玩!   打開台北人的口袋名單,踏訪私藏的絕美風景

、享用最道地的排隊美食、能炒熱氣氛的酒吧和俱樂部當然也不容錯過……白天到黑夜,台北的熱鬧永遠不停歇!     ◆30條一日遊路線╳3大主題,想去哪裡都可以!   無論是體驗台北日常的漫步之旅、充滿粉紅泡泡的情侶出遊,甚至是上山下海的冒險挑戰,跟著路線規劃走,玩得盡興又安心!     ◆大眾運輸搭配導航QRcode,不開車也能台北玩透透!   書中每個景點都配有行程QRcode,讓你用最少的時間,最快到達目的地,手機一掃,立即出發,絕對不迷路  ! 樂遊推薦   蔡炳坤──臺北市副市長   膝關節──台灣影評人協會理事長   雷艾美──「上山下海過一夜」、「愛玩客之老外看台灣」主持人   黃

沐妍──「戒指流浪記」演員/「好想遇健你」、「台3愛玩客」主持人   菜子──「呷飽未」、「青春好7淘」主持人   陳鉦錩──旅遊節目「上山下海過一夜」、「愛玩客之老外看台灣」製作人   苗可麗──金鐘獎女主角   吳鳳──金鐘獎主持人、作家、youtuber   (順序按首字筆劃由多到少排列)   「作者才華橫溢,除了妙筆生花的文筆,還運用四大主題將台北介紹透徹,用年輕人的角度走讀台北,是本隨時會想帶在身上的旅遊書!」──蔡炳坤/臺北市副市長   「這年頭願意為自己專注熱情,一步一腳印地踏遍以上巡點足跡,非常不容易。從採訪整理景點中,給當代國旅踏青者一份屬於新生代的集錦耕耘,是很不容易的

工程。」──膝關節/台灣影評人協會理事長   「感受人情溫度,玩出旅行深度,跟著慕盈一起走進台北大街小巷。」──黃沐妍/「戒指流浪記」演員、「好想遇健你」&「台3愛玩客」主持人   「慕盈是個很懂吃喝玩樂的作家,透過生動的描述,能讓讀者心中產生一幅不同風貌的台北地圖!」──菜子/「呷飽未」、「青春好7淘」主持人   「知名旅遊節目出身的作家,哪裡好吃,哪裡好玩,絕對嚴選再嚴選,是行家級的獨特介紹。」──陳鉦錩/旅遊節目「上山下海過一夜」、「愛玩客之老外看台灣」製作人   (順序按首字筆劃由多到少排列)

Saffron 46 ig進入發燒排行的影片

Saffron 46 這間我已經去3次了!真的很喜歡!景觀超美!如果你喜歡印度料理、喜歡香料,那你一定要去吃看看!
好開心可以跟好友一起去漂亮的餐廳過平安夜~
大家聖誕節快樂!
IG: https://instagram.com/jennaaawang?igshid=1u5fakezo0m5s

RYYZN - It's Not Christmas Time (Without You) (feat. Kimmy Baggins)
Free Download: bit.ly/3hk2lmS
YouTube: www.youtube.com/watch?v=qtTZnylFI1E
Lyrics: genius.com/Ryyzn-its-not-chris…-without-you-lyrics

超大積體電路中石墨烯化銅互聯線的製程方法研究

為了解決Saffron 46 ig的問題,作者Udit Narula 這樣論述:

Recommendation Letter from the Thesis Advisor……………………………………Thesis/Dissertation Oral Defense Committee Certification……………………Acknowledgments……………………………………………………………………… iiiChinese Abstract……………………………………………………………………… ivEnglish Abstract…………………………………………………………………………vTable of Contents…………………………………………………………

……………viList of Figures…………………………………………………………………………ixList of Tables………………………………………………………………………… xvChapter 1: Introduction………………………………………………………………11.1 Brief History of ULSI/VLSI Interconnects’ Electromigration………11.2 Limitations of Copper Interconnects………………………………………21.3 Alternative to Copper Intercon

nects………………………………………31.4 Motivation of Dissertation …………………………………………………5Chapter 2: Prospects of Graphene……………………………………………………92.1 Properties and Applications of Graphene……………………………………92.2 Graphene Synthesis Methods……………………………………………………102.3 Need for a New Growth Method…………………………………………………102.4 Summary

of Prospects of Graphene……………………………………………12Chapter 3: Development of a New Method for Graphenated Copper……………133.1 Phase I: Sample Preparation using PVD method……………………………133.2 Phase I: Post-PVD Annealing …………………………………………………153.3 Phase I: Characterization ……………………………………………………163.4 Phase II: Sample Pr

eparation using PVD method………………………… 183.5 Phase II: Post-PVD Annealing & Characterization……………………… 193.6 Summary of PVD Based Growth Method ……………………………………… 23Chapter 4: Mechanism of PVD Based Growth Method………………………………244.1 Effect of a-C layer thickness on Graphene growth………………………244.2 Effect of ann

ealing time on Graphene growth…………………………… 264.3 Effect of annealing temperature on Graphene growth……………………294.4 Stress Analysis using Finite Element Modelling (FEM)…………………304.5 Explanation of Experimental Results using FEM………………………… 344.6 Summary of Growth Mechanism………………………………………………… 45Chapter 5: A

pplication of Design of Experiments (DoE)………………………465.1 An Introduction to DoE and its Need in Material Science……………465.1.1 An Introduction to DoE………………………………………………465.1.2 Need for DoE in Material Science…………………………………485.2 OFAT vs 2k Factorial Experiment Design………………………………… 495.2.1 One-Factor-at-a-T

ime Experiments…………………………………495.2.2 2k Factorial Design………………………………………………… 515.3 Qualitative DoE Analysis…………………………………………………… 515.4 Quantitative DoE Analysis……………………………………………………575.5 Filtered Quantitative Analysis…………………………………………… 635.6 Summary of Graphene Growth using DoE…………………………………… 66Chapter 6:

Prospects of Graphenated Copper……………………………………686.1 Electrical and Thermal Characteristics………………………………… 686.1.1 Thermal Properties’ Measurement………………………………… 686.1.2 Electrical Resistivity Measurement……………………………… 716.2 Atomic Level Finite Element Modelling…………………………………… 736.3 Summary of Graphenated C

opper as ‘Game-Changer’…………………… 78Chapter 7: Electrochemical Route for Copper on Graphenated Copper………797.1 Fundamental Principle………………………………………………………… 807.2 Experimental Overview………………………………………………………… 817.2.1 Materials…………………………………………………………………817.2.2 Methods……………………………………………………………………817.3 Copper on

Graphenated Copper…………………………………………………827.3.1 Raman Characteristics…………………………………………………827.3.2 SEM/EDS Analysis……………………………………………………… 837.3.3 Thickness Measurement…………………………………………………867.3.4 XRD Analysis…………………………………………………………… 877.4 Proposed Mechanism of Electroless Cu Deposition using Graphene……887.5

Summary of Copper on Graphenated Copper by Electrochemical Means…92Chapter 8: Conclusion and Future work……………………………………………948.1 Conclusion…………………………………………………………………………948.2 Contribution of the Dissertation……………………………………………958.3 Suggestions for Future Work………………………………………………… 96Bibliography or Reference

s………………………………………………………… 98List of Publications…………………………………………………………………114Journals…………………………………………………………………………………114Conference………………………………………………………………………………115Patent……………………………………………………………………………………117List of FiguresFigure 1.SEM image of a failed sample. [17]……………………………………3Figure 2.Typical package le

vel EM resistance trace.[18]……………………3Figure 3.a) Device under test (DUT) is a 100-μm Graphene wire in contact with Ti/Au electrodes, tested at 30 MA/cm2 at 523 K. b) Interconnect lifetime distribution at 523 K for different wire lengths and stress current densities. Each of the lines in the figure s

hows the lifetime of approximately ten wires, each tested individually.[25]………………………5Figure 4.Intercalation Doped Multilayer-Graphene-Nanoribbons.[26]……… 6Figure 5.Micro-scale aerosol-jet printing of graphene interconnects.[27]6Figure 6.EM performance comparison for Copper.[28]……………………………7Figure 7.Q

uality vs Cost map for Graphene synthesis methods. [51]………11Figure 8.Structure configurations of the samples for Phase I experimentation; a) sample S1 with 60 nm a-C layer underneath 800 nm Cu thin film, b) sample S2 with 60 nm a-C layer atop 800 nm Cu thin film, c) sample S3 with 800 nm Cu thin fil

m sandwiched between two 60 nm a-C layers and d) sample S4 with 60 nm a-C layer sandwiched between two 800 nm Cu thin films.[55]…………………………………………………………………14Figure 9.Sample S1, S1.1 and S1.2 preparation process using PVD…………14Figure 10.Sample S2 preparation process using PVD……………………………15Figure 11.Samp

le S3 and S4 preparation process using PVD………………… 15Figure 12.Chamber for Post PVD annealing.………………………………………16Figure 13.Recipe for Post PVD annealing…………………………………………16Figure 14.Raman Spectrum of annealed sample S1.[55]…………………………17Figure 15.Raman Spectrum of annealed samples S2, S3 and S4.[55]…………18F

igure 16.XRD analysis on deposited Cu surface shows presence of a high intensity {111} Cu peak in XRD analysis result……………………………… 19Figure 17.Raman Signatures for samples S1.1……………………………………20Figure 18.Raman Signatures for samples S1.2……………………………………20Figure 19.SIMS data for annealed samples S1, S1.1

and S1.2. [55]……… 22Figure 20.SIMS data for sample S1.2 before annealing, showing the presence of a-C layer beneath Cu film……………………………………………22Figure 21.a) Structure design for samples S1, S1.1 and S1.2 having 60 nm, 36 nm and 12 nm a-C layer sandwiched between 800 nm Cu and Si/SiO2(300 nm) substrate

, b) Schematic for annealing process, c) Raman Spectrum of annealed sample S1, d) Raman Spectrum of annealed sample S1.1, e) Raman Spectrum of annealed sample S1.2.[31]……………………………………………25Figure 22.I2D/IG and ID/IG vs anneal time measured by Raman Spectroscopy. Red lines are for the I2D/IG peak ratio

with the scale on the left y-axis, and blue lines are for the ID/IG peak ratio with the scale on the right y-axis. Dotted lines indicates the uncertainty of the trend as mentioned in the text.[31]…………………………………………………………26Figure 23.Raman Mapping of 10 µm × 10 µm area recorded in steps of 1 µm in all

directions for sample S1.1 annealed at 1020oC for a), b) 20 minutes and c), d) 30 minutes.[31]………………………………………………27Figure 24.Raman Mapping of 10 µm × 10 µm area recorded in steps of 1 µm in all directions for sample S1.2 annealed at 1020oC for a), b) 5 minutes and c), d) 8 minutes.[31]………………………………………

………………… 27Figure 25.Plots of Raman spectrum for sample S1.1 and S1.2 annealed at 920oC and 820oC for 50 mins.[31]…………………………………………………29Figure 26.ANSYS® simulation results of a)-c) Maximum Principal Stress distributions in the three samples at 1020oC, zoning into the maximum stress areas, d)-e) Von-Mi

ses stress in Cu at the corner of each sample, showing the delamination at the a-C/substrate and Cu/a-C interfaces in these sample. [56]……………………………………………………………………32Figure 27.ANSYS® simulation of thermal strain in Graphene on Cu at 1020oC.[31]…………………………………………………………………………… 33Figure 28.Governing reacti

ons [56], [80] for Graphene growth forming the basis for proposed mechanism of Graphene synthesis on Copper film; Here C represents Carbon atom, Gr represents Graphene, CH*/C* represent Hydrogen bonded-Carbon radical/Carbon radical, H* represent Hydrogen radical and ∆H represents heat. [31]………………………

……………………………………35Figure 29.Evolution of stress with decrease in a-C layer thickness. [31]……………………………………………………………………………………………39Figure 30.ANSYS® simulation results for samples S1, S1.1 and S1.2 showing total deformation in the samples which migrates from the corners to the center with the decrease in a

-C layer thickness. [31]…………………… 40Figure 31.ANSYS® simulation results a)-c) maximum von-Mises stress at a-C/Cu interface for sample S1 with respect to different annealing temperatures, d) plot of total deformation in samples S1, S1.1 and S1.2 vs different annealing temperatures. [31]……………………………………

42Figure 32.Relation between thermo-mechanical strain and Raman frequencies of G (ωG) and 2D (ω2D) modes; The data points for samples S1.1 and S1.2 (represented by red-dotted linearly fitted line) are lying parallel to the unstrained graphene line [87], [88] (purple dashed line) and indicate compres

sive strain. [31]……………………………………………………………44Figure 33.Brief History of concepts introduced for DoE in industrial applications……………………………………………………………………………48Figure 34.Illustration of an OFAT experiment in a photolithography experiment. [102]…………………………………………………………………… 50Figure 35.Main effect plots for A

ttribute-Response DoE Analysis of R1…54Figure 36.Interaction plots for Attribute-Response DoE Analysis of R1…54Figure 37.Optimum parameters for maximized response R1…………………… 55Figure 38.Raman Characteristics for experimental run with optimized parameters……………………………………………………………………………… 56Figure 39.Mai

n effect plots for Quantitative DoE Analysis of R2 (left) and R3 (right).[108]………………………………………………………………… 58Figure 40.Interaction plots for Quantitative DoE Analysis of R2 (left) and R3 (right).[108]………………………………………………………………… 58Figure 41.Contour plot analysis for response R2.[56]……………………… 61Figure 42.C

ontour plot analysis for response R3.[56]……………………… 61Figure 43.Plots of ID/IG and I2D/IG peak intensity ratios vs annealing time, for samples with thin a-C layer annealed at 1020oC.[56]……………63Figure 44.Optimum recipe for minimum ID/IG peak and maximum I2D/IG peak intensity ratios……………………………………………………

………………… 64Figure 45.Summary of application of DoE in Graphene Synthesis Process…66Figure 46.Thermal scanner images of Graphenated Cu and Cu thin film on Si/SiO2 substrate………………………………………………………………………69Figure 47.Raman Characteristics of Post-PVD Annealed sample for different annealing durations of (a)

20 minutes and (b) 50 minutes. [submitted for publication]……………………………………………………………………………70Figure 48.Thermal scanner results of Post-PVD Annealed sample for different annealing durations of (a) 20 minutes and (b) 50 minutes. [submitted for publication]……………………………………………………… 70Figure 49.Simple circuit m

odel for Graphenated Copper.……………………73Figure 50.Atomic level Finite Element Simulation steps……………………74Figure 51.Model of the Test structure redrawn using work by Tan et al. [118]………………………………………………………………………………… …74Figure 52.Atomic Flux Divergence calculation for FEM simulation of M1-M2 EM Test Struct

ure. [submitted for publication]………………………………76Figure 53.Resistance change for FEM simulation of M1-M2 EM Test Structure. [submitted for publication]…………………………………………76Figure 54.Average of Total-Average AFD for FEM simulation of M1-M2 EM Test Structure with and without Graphene………………………………………77Figure

55.Graphene sandwiched within copper interconnection.[submitted for publication]………………………………………………………………………79Figure 56.Graphenated Cu dipped in Copper Sulphate (CuSO4) solution for 3, 6, 9 and 12 hours. [submitted for publication]………………………… 81Figure 57.Interaction of electrolyte with Graphene sittin

g on Cu foil. (a) Optical image of untreated Mono-layer Graphene on Cu foil, (b) Optical image of electrolyte-treated Mono-layer Graphene on Cu foil, (c) Raman spectra of (a) and (b) using Horiba LabRAM HR Evolution Raman Spectrometer. [submitted for publication]…………………………………… 82Figure 58.SEM image

of (a) Fresh Graphenated Cu sample in SEI mode, (b) Sample treated with electrolyte for 3 hours in SEI mode (c) Sample treated with electrolyte for 12 hours in SEI mode. (d), (e) and (f) are the same images as (a), (b) and (c) respectively, but in TOPO mode. (Accelerating Voltage= 5 kV, Emission Cur

rent= 10 µA; Working Distance= 5.7-6.1 mm, Magnification= 2500x); Measurement taken using JEOL-JSM SEM with OXFORD instruments EDS. The grown islands are marked by white arrows. [submitted for publication]………………………………………………83Figure 59.EDS Mapping of Sample treated with electrolyte for 3 hours for C,

O and Cu (Accelerating Voltage= 15 kV, Magnification= 2500x, Counts= 3.5 million); Measurement taken using JEOL-JSM SEM with OXFORD instruments EDS. [submitted for publication]………………………………… 85Figure 60.EDS Mapping of Sample treated with electrolyte for 12 hours for C, O and Cu (Accelerating Voltage

= 15 kV, Magnification= 2500x, Counts= 3.5 million); Measurement taken using JEOL-JSM SEM with OXFORD instruments EDS. [submitted for publication]………………………………… 85Figure 61.Thickness of deposited Cu domains (measured using a Keyence confocal Optical Microscope VHX-5000) vs time of sample dipping/trea

tment with the electrolyte, with error bars indicated by the blue vertical lines. [submitted for publication]……………………………………………… 86Figure 62.XRD pattern for Fresh Graphenated Cu sample and Sample treated with electrolyte for 12 hours from PANalytical Empyrean XRD System. (#) Pure Copper peak of {200}

and {400} orientation, (*) Cubic Cu2O peaks of {111} and {222} orientation and (∆) Pure Copper peak of {111} orientation are observed. [submitted for publication]………………………………………87Figure 63.Cause of Polarization effect due to difference in work function of Copper (Cu) and Graphene (Gr) depicted by (

a) Density of States (DOS) diagram before contact (drawn using understandings from work done by Nagashio et al.[140]) (b) Energy band diagram for Graphenated Copper. Here dCu-Gr (3.26 Å [136]) represents equilibrium separation of the Graphene sheet from Cu metal surface, WFCu (5.22 eV [141]), WFGr (

4.40 eV [141]) and WF (4.367 eV [141]) are the work functions of Copper, Graphene and Graphene covered Copper (Graphenated Cu) respectively, ΔEf (WF - WFGr) is defined as the energy (per carbon atom) required to separate the graphene sheet from the Cu surface, ΔV is the potential change generated by

the metal-graphene interaction and Ef is the Fermi energy (drawn using the understandings from the work done by Giovannetti et al.[ 141]). [submitted for publication]…………………………………………………………89Figure 64.Charge transfer for Electroless Copper deposition using Graphenated Cu as a reducing agent. Here EF

(Gr-Cu) (~4.1 eV), EF(Cu2+/Cu) (5.19 eV [149]) and EF are the energy levels of Graphenated Copper, Cu Redox reaction and Electrolyte-treated Graphenated Cu respectively. [submitted for publication]…………………………………………………………90Figure 65.Trend of ΔEf with respect to dM-Gr for metals such as Pt, Al, Au, Ag,

Cu [141], [132] and Ni, Co, Ti [140]. [submitted for publication]…………………………………………………………………………………………… 91List of TablesTable 1:Cu Replacement suggested by ITRS [11]…………………………………4Table 2:Comparison of plots in Figure 3 and Figure 6……………………… 7Table 3:Raman Characteristics for annealed samples at 1020oC

for 50 mins [55] ………………………………………………………………………………………21Table 4:Thermo-mechanical properties for stress analysis using FEM…… 32Table 5:DoE Factors for Qualitative and Qualitative Analysis [108][56].52Table 6:Qualitative and Qualitative Full Factorial DoE Analysis [108][56] ……………………………………………………………………………

……………… 53Table 7:ANOVA statistics for Response R2 [56] ……………………………… 59Table 8:ANOVA statistics for Response R3 [56]…………………………………60Table 9:Map of Choice of Levels and Quality & Number of Graphene Layers [56]……………………………………………………………………………………… 62Table 10:Filtered DoE Factors [108] …………………………………………… 65Ta

ble 11:Output Responses for Filtered DoE Analysis [108] ……………… 65Table 12:Four Point Probe measurement for the experimental sample [submitted for publication] ……………………………………………………… 71Table 13:Feature sizes of the Test Structure used in FEM [118]………… 75Table 14:Model Parameters for the Test Structure

[72], [76][118]……… 75Table 15:Average Cu/O Atomic % for different samples from EDS ………… 84

薑黃素對胰液所誘導肺損傷之保護效用

為了解決Saffron 46 ig的問題,作者陳冠豪 這樣論述:

中文摘要 近日在全地引起的新興疾病諸如中東呼吸症候群(middle east respiratory syndrome, MERS)、急性呼吸道症候群(severe acute respiratory syndrome, SARS)以及伊波拉病毒、炭疽桿菌和退伍軍人桿菌等引起的高死亡率,均與肺部的發炎、肺部的水腫相關。其發病機轉除了與微生物感染有關外,肺部的嚴重發炎反應也扮演極重要的角色。肺部的炎症可因發炎細胞滯留在肺內,引起肺內氧化壓力的上升、肺循環壓力上升及肺微血管通透性的增加。此外血球滯留在肺內引起的肺組織缺血或再灌流,也有一定的關係。腸道的壞死、胰臟的發炎也會引起全身性的發炎反

應,進而引起肺臟的血流動力學的改變,肺微血管的通透性增加,緊接著引發肺水腫的現象。在初步研究中發現,當肺組織在缺血再灌流的環境下,肺內的積水上升(p &;lt; 0.01)、肺組織灌洗液中蛋白質(PCBAL)含量上升(p &;lt; 0.001)及肺微血管通透性上升(p &;lt; 0.05)。使用了水溶性的氧自由基吞噬劑(dimethylthiourea)後損傷的參數均明顯改善(PCBAL, p &;lt; 0.01; 肺重/體重比(LW/BW),p &;lt; 0.05),而大分子量的自由基吞噬劑superoxide dismutase以及catalase就未呈現有保護作用(p &;gt;

0.05),此可能與這兩者的蛋白質分子量太大無法進入細胞內有關。在另一組實驗中,我們證實當胰臟在缺血再灌流引發之胰臟發炎後,呼吸道的反應性會上升(p &;lt; 0.001)。此反應性的上升應該與發炎反應、肺內白血球的上升以及腫瘤壞死因子、羥自由基、氮化壓力上升有關。使用抗氧化劑薑黃素後,這些反應均明顯減少。由於胰臟缺血再灌流後血中澱粉酶、脂肪酶及蛋白酶的上升間接證明是因胰液外滲到血液中(p &;lt; 0.01),進而進入肺內引發肺部的發炎甚至水腫。因此在進一步的研究中,我們建立了以胰液直接噴灑至實驗大鼠呼吸道的實驗模式。在實驗中證實胰液會引發阻塞性及限制性肺部功能變化,此與肺部發炎性反應

有關。此外,引發肺微血管通透性病變,血液中白血球數量上升、紅血球數量降低。此外,血紅素、血球容積比、平均紅血球容積、平均紅血球血紅素重量、平均紅血球血紅素濃度等均上升,並且使血小板數值下降,進而造成瀰漫性血管凝血現象。在血清與肺組織灌洗液中均發現乳酸脫氫酶(lactate dehydrogenase, LDH)上升,顯示細胞損傷嚴重。在使用全套肺功能相關生理試驗(pulmonary function test, PFT)發現最大自發性換氣量、中間潮氣呼氣流量、阻力指數、肺活量、呼吸功、最大呼氣流速、最大中段吐氣流量及用力吐氣時間在50%的氣體流量均下降,而肺總量、肺餘容積和肺順應性(chord

compliance)則是上升,顯示出肺功能因此受到影響。使用薑黃素後對於實驗大鼠的支氣管灌洗液(bronchoalveolar lavage fluid, BALF)中的蛋白質、血清中的氮化壓力、氧化壓力、乳酸脫氫酶以及肺功能參數,均顯示具有明顯的保護效用。透過本研究證實薑黃素具備強力的抗氧化能力,可減少氧化壓力及氮化壓力,以致無論在缺血再灌流或是胰液引發的肺損傷及肺功能改變,均能產生明顯的改善效果。此外本研究也建立了一個以霧化胰液至肺內引發肺損傷的實驗模式,對於胰臟發炎及肺部病變提供了一個很好的實驗模式。