RH- 9320 PTT的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列問答集和資訊懶人包

長庚大學 化工與材料工程學系 楊禎明所指導 Pradeep Kumar Panda的 殼聚醣的改質與性質評估 (2020),提出RH- 9320 PTT關鍵因素是什麼,來自於no。

而第二篇論文國立成功大學 化學系 林榮良所指導 劉應凡的 苯乙炔在銅(100)與氧/銅(100)表面的吸附與熱反應研究 (2020),提出因為有 苯乙炔、Cu(100)、O/Cu(100)、程序控溫反應/脫附(TPR/D)、反射吸收紅外光譜(RAIRS)、X光光電子譜(XPS)、密度泛函理論(DFT)的重點而找出了 RH- 9320 PTT的解答。

接下來讓我們看這些論文和書籍都說些什麼吧:

除了RH- 9320 PTT,大家也想知道這些:

殼聚醣的改質與性質評估

為了解決RH- 9320 PTT的問題,作者Pradeep Kumar Panda 這樣論述:

ContentsRecommendation Letter from the Thesis advisorThesis/Dissertation oral defense Committee certificationAcknowledgement iiiAbstract

vTable of Contents viiiList of Figures

xvList of Tables xxChapter 1 Introduction and background ………………. 11.1 Chitosan and its modification

…………………. 11.2 Poly (vinyl alcohol) … ………………. 51.3 Shape memory polymer …………………. 61.4 Membrane technology ………………….. 91.5 L

ayer by layer technology …………………….. 101.6 Poly (γ-glutamic acid) ………………………. 11Chapter 2 Literature review and Dissertation scope ………… 142.1 Modification of chitosan

…………… 142.2 Shape memory polymers ………… 192..2.1 Types of SMPs based on Poly (vinyl alcohol) …………. 202.2.1.1 Water-induced SMP …………. 202.2.1.2 Th

ermo-induced SMP ………… 242.2.1.3 Light-induced SMP …………… 252.2.1.4 pH-induced SMP ……. …….. 252.2.1.5 Electro-induced SMP

………… 272.2.1.6 Sound-induced SMP …………. 282.3 Layer by layer assembly of polyelectrolytes ….……. 302.4 Dissertation scope

……….. 32Chapter 3 Materials and Methods ………. 343.1 Materials ………… 343.2 Methods

………….. 353.2.1 Modification of different molecular weight of chitosan ……….353.2.1.1 Synthesis of partially water soluble chitosan ……… 353.2.1.2 Characterization of partially water soluble chitosan …… 353.2.1.2.1 FTIR analysis

……… 353.2.1.2.2 Evaluation of amino group by ninhydrin assay ………. 363.2.1.2.3 Determination of p-Coumaric acid on chitosan ………. 363.2.1.2.4 Thermal analysis (TGA and DSC) ……… 363.2.1.2.5

X-ray diffraction analysis (XRD) ……….. 373.2.1.2.6 Water solubility test ………. 373.2.1.2.7 Evaluation of antioxidant activity by DPPH assay ……… 383.2.1.2.8 Evaluation of antioxidant activity by reducing

power assay … 383.2.2 Preparation of blended membrane by using modified chitosan (M-Cs) and PVA ………….. 393.2.2.1 Synthesis of p-coumaric acid-modified water-solu

ble chitosan 393.2.2.2 Characterization of modified chitosan …….. 393.2.2.3 Preparation of membranes by solution casting …….. 393.2.2.4 Characterization of prepared membranes ………. 403.2.2.4.1 Fourier transform infrare

d spectroscopy (FTIR) ……….. 403.2.2.4.2 Wide-angle X-ray diffraction (WAXD) ………. 403.2.2.4.3 Thermogravimetric analysis (TGA) ………. 403.2.2.4.4 Swelling behavior and evaluation of gel fraction ………. 413.2.2.4.5 Water contact a

ngle ……… 423.2.2.4.6 Dynamic mechanical analysis (DMA) ………. 423.2.2.4.7 Mechanical properties (tensile properties and elongation at break) ..423.2.2.4.8 Evaluation of water-induced shape memory behavior ……. 423

.2.3 Development of polyelectrolytes thin films by LBL technique ….. 433.2.3.1 Pre-treatment of substrates ……….. 433.2.3.2 Modification of Cs by ferulic acid (FA) ………. 433.2.3.3 Characterizations of modified chitosan by F

A (MCS) …… 443.2.3.3.1 Evaluation of amino group by ninhydrin assay …….. 443.2.3.3.2 Determination of ferulic acid (FA) on chitosan …………. 443.2.3.3.3 Thermal gravimetric analysis (TGA) ………….. 443.2.3.3.4 Differential scanning calorimetry

analysis (DSC) …………. 453.2.3.3.5 Water solubility test …………. 453.2.3.4. Preparation of film forming solutions …………. 463.2.3.4.1 LBL self-assembly Multilayer films ………… 463.2.3.5 Charact

erization …………. 463.2.3.5.1 Fourier Transform Infrared spectroscopy (FTIR) ……….. 473.2.3.5.2 X-ray diffraction analysis (XRD) ………. 473.2.3.5.3 UV-Vis spectroscopy (UV-vis)

………. 473.2.3.5.4 X-ray photoelectron spectroscopy (XPS) ……….. 483.2.3.5.6 Scanning electron microscopy (SEM) ………… 483.2.3.5.7 Water Contact angle measurement ………... 483.2.3.5.8 Protein adsorption

………… 49Chapter 4 Results and discussion ………… 504.1 Modification of different molecular weight of chitosan ……….. 504.1.1 FTIR analysis …………..

504.1.2 Evaluation of amino group content by ninhydrin assay ………. 514.1.3 Estimation of p-Coumaric acid on chitosan ……… 524.1.4 Thermal gravimetric analysis (TGA) ……….. 534.1.5 Differential scanning calorimetry (DSC)

………. 554.1.6 XRD analysis ……… 564.1.7 Solubility test .……… 584.1.8 Antioxidant activity ………… 604.1.8.1 D

PPH assay ………… 604.1.8.2 Reducing power assay ………… 614.2 Preparation of blended membrane by using modified chitosan (M-Cs) and PVA ……………………………………………………………………… 634.2.

1 Characterization of modified chitosan …………… 634.2.2. FTIR analysis …………… 664.2.3. WXRD analysis ………….. 684.2.4 Thermal gravimetric analysis (TGA) ………

….. 704.2.5 Water responsive swelling behavior, thickness, and gel fraction 714.2.6 Water contact angle …………. 724.2.7 Dynamic mechanical analysis (DMA) ………… 734.2.8 Mechanical properties

………… 744.2.9 Evaluation of water-induced shape memory behavior …… 754.3. Development of polyelectrolyte thin films by LBL technique …. 824.3.1 Modification of chitosan by FA ….……… 824.3.1.1 Thermal analysis (TGA and DSC)

…………. 824.3.1.2 Ninhydrin assay, Folin-Ciocalteu reagent assay and water solubility 834.3.2 Characterizations of polyelectrolyte thin films ………… 844.3.2.1 FTIR analysis ………… 844.3.2.2 XRD analysis

………… 874.3.2.3 UV measurement …………. 894.3.2.4 XPS analysis ……….. 894.2.3.5 Morphology analysis ………..

914.3.2.6 Contact angle measurement ………. 934.3.2.7 AFM analysis ……….. 934.3.2.8 Protein adsorption study ………. 95Chapter 5 Conclusions and outlooks

……….. 98References ……… 100List of FiguresFig. 1.1 Chemical structure of (a) chitosan (b) p-Coumaric acid …………… 3Fig. 1. 2. Hydrolysis of polyvinyl aceta

te …………… 6Fig. 1.3 Schematic diagram of definition SMPs …………… 7Fig. 1.4 Applications of SMPs …………….. 8Fig. 1.5 Applications of polymeric mem

branes ………….. 9Fig: 1.6 Layer by layer schematic diagram …………… 10Fig. 1.7 Applications of Layer by layer polyelectrolytes thin film ………… 11Fig. 1.8 Structure of Poly (γ-glutamic acid)

.. ………… 12Fig. 2.1. Antioxidant activity of ferulic acid conjugated chitosan …………… 15Fig. 2. 2 DPPH radical scavenging effect of various molecular weight of chitosans … 16Fig. 2.3. Mechanical properties of Cs/CH films a

fter equilibrium at different relative humidity (RH): (a) tensile strength, (b) Young’s modulus and (c) elongation at break ……… 17Fig. 2.4 Reaction mechanisms for the synthesis of phenolic acid modified chitosan by EDC/NHS chemical coupling

………………. 18Fig. 2.5 Antibacterial activity of OFCS and chitosan against E. coli. against S. aureus ..19Fig.2.6 Shape recovery of PVA and PVA/GO (0.5 wt%, 1.0 wt%) samples (bent into “U” like shape) in water. A pure PVA strip was coated with red dyestuff that changed its colo

r from transparent to red ……………… 22Fig. 2.7 The pure PVA film and β-CDs/PVA composite film in a) daylight and b) under UV light at 365 nm. Shape recovery of c) the pure PVA film and d) the β-CDs/PVA composite film at

room temperature ………………. 22Fig. 2.8 Images illustrating the shape recovery behaviors of PVA/silk hybrids immersed in water ………………….

23Fig 2.9 (a) Illustration of hydrogen bonding interaction among PVA, GO and water; (b) schematic representation of the shape-memory PVA/GO materials actuated by water …. 24Fig 2.10 (a, b) Photos showing the shape recovery behavior of the PVA-PDAPs-2 hydrogel under NI

R irradiation (0.75 W cm-2) …………… 25Fig. 2.11. Photographs demonstrate the shape recovery behavior of the Alg-PBA/PVA hydrogels in (A) 0.2 M gly (pH 6) solution, B) 0.2 M glucose solution, and C) basic aqueous solution (pH 10.6)

……………… 27Fig. 2.12 Electroactive shape recovery behavior of PVA composite with 20wt.% MWNTs loading …………………..

28Fig. 2.13 (a) Photo showing the experimental setup used for monitoring therapeutic-ultrasound-triggered shape recovery of the hydrogel. (b) Photos showing the shape recovery of the 1.5MA-1 hydrogel under ultrasound irradiation, with the sample of original shape being first processed to

a temporary twisted shape and then subjected to therapeutic ultrasound (2.0 W/cm2) for different times (1-5 min) ………… 29Fig. 2.14 Layer-by-Layer Assembled Multilayer Films with Multiple Antibacterial

activities . 31Fig. 2.15 (a) Schematic illustration of the preparation of Alg-CS-GT via layer-by-layer assembly. Photographs of wet Alg gel (b), freeze-dried Alg-Cs-GT (c) and Alg/BCNs-Cs-GT (d) composite scaffolds. SEM images of Alg gel (e), Alg-Cs-GT (f) and Alg/BCNs-Cs-GT (g) composite scaffolds

………… 32Fig. 3.1 The schematic illustration of spin assisted layer-by-layer (LBL) self-assembly technique …………..

47Fig. 4.1 FTIR spectra of all native chitosan (Cs360.8, Cs500, Cs600) and their corresponding modified products (M3Co, M5Co, M6Co) ………………… 51Fig. 4.2 TGA (a, c) and DTG (

b, d) curves of native chitosan (Cs360.8, Cs500, Cs600) and their corresponding modified products (M3Co, M5Co, M6Co), (a) and (b) in N2 and (c) and (d) in O2 environment …………………. 54Fig. 4.3 DSC thermograms

of all native chitosan (Cs360.8, Cs500, Cs600) and their corresponding modified products (M3Co, M5Co, M6Co) …………….. 56Fig. 4.4 XRD patterns of all native chitosan (Cs360.8, Cs500, Cs600) and their corresponding modified products (M3Co, M5Co, M6Co)

……………. 57Fig. 4.5 pH dependence of water solubility of all native chitosan (Cs360.8, Cs500, Cs600) and their corresponding modified products (M3Co, M5Co, M6Co) …………. 60Fig. 4.6 Uv-Vis curve of chitosan, p-Coumaric acid, and modified chitosan

……… 64Fig. 4.7 1H NMR spectra of (a) p-coumaric acid (b) Chitosan and, (c) p-coumaric modified chitosan ………… 65xviiScheme 4.1 Mechanism pathway to prepare p-coumaric acid modifi

ed water soluble chitosan 66Fig. 4.8 FTIR curves of various membranes (PVA, PVA/Cs, and PVA/M-Cs) ……. 68Fig. 4.9 WXRD patterns of various membranes (PVA, PVA/Cs, and PVA/M-Cs) ….. 69Fig. 4.10 TGA and DTG (insert) curves of various membranes (PVA, PVA/Cs, and PVA/M-Cs) ……

……… 71Fig. 4.11 DMA analysis of various membranes (PVA, PVA/Cs, and PVA/M-Cs): Plot of storage modulus and tan delta (insert) curves ………………

74Fig. 4.12 The water induced shape recovery process of various membranes (a) PVA (b) PVA/Cs, and (c) PVA/M-Cs in water ………………….. 76Scheme 4.2 The bending process of all samples …………… 7

8Fig. 4.13 Storage modulus and tan delta (insert) curves of PVA/M-Cs sample after different immersion times in water ……………………… 79Fig. 4.14 (a) FTIR curves, (b) XRD patterns of PVA/M-Cs sample after different immersion times in water

………………… 80Scheme 4.3 The interaction among PVA, M-Cs, and water …………. 81Fig. 4.15 TGA (a) and DSC (b) curves of chitosan and modified chitosan …. 82Fig. 4.16 pH dependence of water

solubility of Cs and MCS …………. 84Fig. 4.17 FTIR spectra of pure Cs powder, PGA powder, MCS powder, (PGA/Cs)5 film and (PGA/MCS)5 film ……………. 85Fig. 4.18 XRD patterns of pure Cs powder, PGA po

wder, MCS powder, (PGA/Cs)5 film andxviii(PGA/MCS)5 film …………….. 88Fig. 4.19 The UV-vis absorbance dependence at 240 nm as a function of the number of bilayers for (a) (PGA/Cs) and (b) (PGA/MCS) films

…………… 89Fig. 4.20 XPS wide scan spectra of (a) APTES, (b) (PGA/Cs)5 and (c) (PGA/MCS)5 films 90Fig. 4.21 SEM images of (a) Glass, (b) APTES, (c) (PGA/Cs)5 and (d) (PGA/MCS)5 films 91Fig. 4.22 SEM images of cross-section of (a) (PGA/Cs)5 and (b) (P

GA/MCS)5 films 92Fig. 4.23 AFM images (a) Glass, (b) APTES, (c, d) (PGA/Cs) films and (e, f) (PGA/MCS) consists of one and five bilayers ……………….. 94Fig. 4.24 The protein adsorption of BSA and Lysozyme on the (PGA/Cs) and

(PGA/MCS) multilayers films surfaces. Bar display SD (n=3) ……….. 95List of TablesTable 1.1 Chemical structure of important phenolic acids ………….. 4Table 4.1 Absorbance at 570 nm for determination of amino group

content of all samples .. 52Table 4.2 Representative TGA and DTG data of native chitosan (Cs360.8, Cs500, Cs600) and their corresponding modified products (M3Co, M5Co, M6Co) …………. 55Table 4.3 Representative XRD data of all native chitosan (Cs360.8, Cs500, Cs600) and th

eir corresponding modified products (M3Co, M5Co, M6Co) …………………. 58Table 4.4 Water solubility (WS) of all samples ………………….. 59Table 4.5 Antioxidant activity by both DPPH and reducing power assay of all native chitosan (Cs360.8, Cs500, Cs

600) and their corresponding modified products (M3Co, M5Co, M6Co) 62Table 4.6 HPLC purity analysis of chitosan modified products ……… 63Table 4.7 The relative intensity of WXRD and contact angle values of various membranes 70Table 4.8 Values of thickness, swelling and

gel content of various membranes (PVA, PVA/Cs, and PVA/M-Cs) …………… 72Table 4.9 Representative mechanical and thermal properties of all prepared samples …. 75Table 4.10 Comparison of water-induced s

hape memory recovery time of previous studies with this study …………… 77Table 4.11 The shape fixing ratio and shape recovery values of various membranes ….. 77Table 4.12 Values of volume swe

lling ratio (Vs), weight swelling ratio (Ws), storage modulus (S m) and glass transition temperature (T g) of PVA/M-Cs sample after different immersion times in water ……….. 79Tabl

e 4.13 FTIR assignments of PGA powder, Cs powder, MCS powder, (PGA/Cs)5 film, and (PGA/MCS)5 film ……………. 87Table 4.14 The surface atomic percentages of C, O and N of various samples 90Table 4.15 The cont

act angle values of LBL films …….. 93Table 4.16 Zeta potential and thickness values of LBL films ………… 97

苯乙炔在銅(100)與氧/銅(100)表面的吸附與熱反應研究

為了解決RH- 9320 PTT的問題,作者劉應凡 這樣論述:

此篇論文是探討超高真空(ultra-high vacuum)系統中苯乙炔(Phenylacetylene (PA), C6H5-C≡C-H)在Cu(100)以及O/Cu(100)表面的吸附以及熱反應。使用以下幾種表面分析技術:程序控溫反應/脫附(temperature-programmed reaction/desorption, TPR/D)、反射吸收紅外光譜(reflection-absorption infrared spectroscopy, RAIRS)、X光光電子譜(x-ray photoelectron spectroscopy, XPS),並輔以密度泛函理論計算(densit

y functional theory, DFT)以模擬分子的吸附結構。Phenylacetylene/Cu(100)的熱反應產物有Styrene、Benzene以及H2。RAIR光譜顯示PA分子以兩個炔基碳原子鍵結於表面,導致C≡C-H特徵振動吸收訊號(~3327 cm-1)消失,XPS也證明此分子以炔基碳與表面鍵結,產生了283.2 eV的C1s束縛能峰。PA分子在350 K-450 K之間炔基碳氫(≡C-H)斷鍵並可能產生氫化中間物,如(C6H5)C2Hx, x=3,2。在370 K有少量Styrene脫附,高於500 K發生C-C和C-H鍵斷裂生成H2,以及少量Benzene,並在表面

留下殘碳。Phenylacetylene/O/Cu(100)的熱反應產物有H2、H2O、CO、CO2以及少量Benzene。XPS數據指出表面上的O(ad)於低溫(145 K)先抓取炔基氫(≡C-H)形成OH(ad),相比無O(ad)下,≡C-H分解的溫度低了許多。接著在200 K-350 K形成H2O,升溫到400 K中間物(C6H5-C≡C)持續分解CO、CO2以及H2O。