R plot add line的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列問答集和資訊懶人包

長庚大學 醫學影像暨放射科學系 趙自強、董傳中、李宗其所指導 江悅的 應用於相對生物效應及微電子可靠度測試的輻射品質評估方法 (2020),提出R plot add line關鍵因素是什麼,來自於微劑量學、相對生物效應、輻射可靠度、蒙地卡羅模擬。

而第二篇論文嘉南藥理大學 保健營養系 顏名聰所指導 鄭小芬的 添加波蘭液種創意麵點、麵包食譜開發之營養分析研究 (2020),提出因為有 波蘭液種、麵點、麵包的重點而找出了 R plot add line的解答。

接下來讓我們看這些論文和書籍都說些什麼吧:

除了R plot add line,大家也想知道這些:

應用於相對生物效應及微電子可靠度測試的輻射品質評估方法

為了解決R plot add line的問題,作者江悅 這樣論述:

Table of Contents摘要 iiiAbstract ivChapter 1. Introduction 1Chapter 2. Radiation Environments and Their Quality 72.1. RADIATION QUANTITY AND QUALITY 72.2. RADIATION ENVIRONMENT IN THIS STUDY 92.2.1. Radiation for semiconductor industrial practice 102.2.2. Radia

tion for medical practice 122.3. SUMMARY 20Chapter 3. Microdosimetry and its simulation and measurement 213.1. CONCEPTS OF MICRODOSIMETRY 243.2. MONTE CARLO SIMULATION 353.3. MICRODOSIMETRY MEASUREMENT 403.4. SUMMARY 46Chapter 4. Lineal energy of proton in s

ilicon 474.1. THE DIFFERENCE BETWEEN LINEAL ENERGY AND LET 474.2. MICRODOSIMETRY SIMULATION 534.3. RESULTS AND DISCUSSIONS 574.3.1. Effect of SV thickness on y distribution 574.3.2. Lineal energy contribution from various secondary species 634.3.3. Effect of vario

us physics models on secondary yields 694.4. SUMMARY 70Chapter 5. Equivalence of Neutrons and Protons in Single Event Effects Testing 725.1. SINGLE EVENT EFFECT TESTING – METHODS AND FACILITIES 725.2. PROCESS FOR EQUIVALENCE VALIDATION 755.2.1. Monte Carlo Simulation

775.2.2. Material Structure 795.2.3. Data Analysis 815.3. RESULTS AND DISCUSSIONS 825.3.1. LET Difference between Neutrons and Protons 825.3.2. Secondary Particle Yield Difference between Neutronand Proton 885.3.3. LET Difference between Layer Structures with andwit

hout SiGe 915.3.4. Secondary Particle Yields Difference between Layer Structure with and without SiGe 935.3.5. Energy Deposition Difference between Neutronsand Protons 955.4. SUMMARY 99Chapter 6. Silicon equivalent gas in silicon equivalent proportional counter 1016.1.

SILICON EQUIVALENT GAS 1016.2. SIMULATION AND ANALYZATION METHODS FOR SE GAS SELECTION 1036.3. RESULTS AND DISCUSSION 1046.3.1. LET spectra 1046.3.2. Secondary particle yields 1056.4. SUMMARY 112Chapter 7. High Z material enhanced RBE 1147.1. RADIATION SENSI

TIZERS IN RADIATION THERAPY 1147.2. RBE SIMULATION AND CALCULATION METHODS 1177.2.1. MKM simulation 1177.2.2. DSB simulation 1207.3. RESULTS AND DISCUSSION 1217.3.1. Verification for microdosimetry simulation 1217.3.2. Microdosimetry spectra and RBE 1237.3.3.

Secondary electron spectra 1307.3.4. Correlation of DSB with electron energy 1327.3.5. Spectra of DSB 1337.4. SUMMARY 134Chapter 8. Conclusion 136References 138 List of FiguresFigure 1 1 LET threshold of SEEs vs. Feature size [6] 4Figure 1 2 (a) mechanism of total

ionization effect, (b) ΔVtm vs. time diagram due to TID [4] 4Figure 1 3 (a) Ionizing radiation generates charge, (b) Negative charge moves to the positive electrode to generate current, (c) Potential difference generates current, and (d) Current vs. time diagram due to a single event under revers

e bias[7] 5Figure 2 1 Example of a CMOS structure and mechanism of single event effect. (A) is the event from the heavy ions. (B) from the natural particle or proton. 12Figure 2 2 Schematic comparison of the local dose distributions (left) and corresponding spatial DSB distributions (right) fo

r low energetic (top) and high energetic (bottom) carbon ions. Assumed DSB yields are 50 DSB and 0.5 DSB for the low energetic and high energetic ions, respectively [33] 18Figure 2 3 Representation of a 10mGy dose delivered from gamma 60Co (left) and the same dose delivered by 1 MeV neutrons (rig

ht) in a cell volume of 150 cell of 5 µm diameter [37] 19Figure 2 4 The explanation of domain in microdosimetry kinetic model 19Figure 3 1 Specific energy (dE/dm) deposited by radiation in matter as a function of mass with the macroscopic dose being constant. 23Figure 3 2 lineal energy dist

ribution of tissue irradiated by 250 kVp X-ray. Linear scale. 31Figure 3 3 lineal energy distribution of tissue irradiated by 250 kVp X-ray. Log scale. 32Figure 3 4 lineal energy distribution of tissue irradiated by 250 kVp X-ray. Semi-log scale. 33Figure 3 5 dose weighted lineal energy dis

tribution of tissue irradiated by 250 kVp X-ray. Semi-log scale. 34Figure 3 6 Lineal energy spectra of different sensitive volumes in silicon irradiated by a 200 MeV proton beam. 35Figure 3 7 Block diagram of basic process of Monte Carlo method in radiation transportation code 39Figure 3 8

A sketch of the cross-sectional view of SEPC with its component 43Figure 3 9 block diagram of the SEPC measurement system 43Figure 3 10 Simulated lineal energy spectra for SEPC irradiated by 50 kVp and 150 kVp X-ray 45Figure 4 1 The geometry setup in this study. The silicon is with natural

isotope abudence, density is 2,330 mg/cm3 and mean excitation potential I = 173 eV. 57Figure 4 2 Lineal energy spectra of different sensitive volumes in silicon irradiated by a 200 MeV proton beam. 61Figure 4 3 Cumulative distribution function of kinetic energy of secondary particles generate

d by 200 protons irradiated on silicon 62Figure 4 4 Lineal energy spectra of different sensitive volumes in silicon irradiated by a 200 MeV proton beam (log y scale). 63Figure 4 5 y spectra in 100 nm silicon irradiated by a 200 MeV proton beam 67Figure 4 6 Secondary particle yields in 100 n

m silicon irradiated by a 200 MeV proton beam using various physics models. BIC represents the Binary cascade model. BERT represents Bertini cascade model. HP represents high precision add-on 70Figure 5 1 The Los Alamos Neutron Science Centre (LANSCE) broad band neutron spectrum used in this stud

y [112]. 76Figure 5 2 The layer structure (a) without SiGe and (b) with SiGe used in this simulation (not to scale). 80Figure 5 3 Linear energy transfer (LET) spectra in a structure without silicon-germanium (SiGe) irradiated by 63, 105, 150, 200, and 230 MeV proton and LANSCE neutron. 84Fi

gure 5 4 The LET contribution from He, Mg, and Al generated by the 200 MeV proton and the LANSCE neutron. In parentheses, the first symbol represents incident particles, and the second symbol represents particles that contribute to the LET. 85Figure 5 5 LET spectra in a structure without SiGe fro

m 10, 30, 50, 63, and 200 MeV protons and LANSCE neutron. 86Figure 5 6 The secondary particle yields in structure without SiGe irradiated by 63, 105, 150, 200, and 230 MeV protons and LANSCE neutron. 89Figure 5 7 LET spectra of the structure with and without SiGe irradiated by 63 and 230 MeV p

rotons and LANSCE neutron. The plot is in log-log scale. 92Figure 5 8 The secondary particle yields in the structure with and without SiGe irradiated by 63 and 230 MeV protons and LANSCE neutron. 94Figure 6 1 Simulated LET spectra in the SEPC cavity for proton irradiations of (a) 63 MeV and (b

) 230 MeV. Results of cavity gas Si, CCl4, propane, Ne and Ar are plotted. 107Figure 6 2 Simulated LET spectra in the SEPC cavity for neutron irradiations of (a) 4.44 MeV and (b) 750 MeV. Results of cavity gas Si, CCl4, propane, Ne and Ar are plotted. 108Figure 6 3 Evaluation index, EI, of LET

spectra for different SEPC cavity gases under proton and neutron irradiations 109Figure 6 4 Simulated secondary particle yields in the SEPC cavity for proton irradiations of (a) 63 MeV and (b) 230 MeV. Results of cavity gas Air, Ar, CCl4, CO2, He, Kr, Ne, propane, Si and Xe are plotted 110Fig

ure 6 5 Simulated secondary particle yields in the SEPC cavity for neutron irradiations of (a) 4.44 MeV and (b) 750 MeV. Results of cavity gas Air, Ar, CCl4, CO2, He, Kr, Ne, propane, Si and Xe are plotted. 111Figure 6 6 Evaluation index, EI, of secondary particle yields for different SEPC cavity

gases under proton and neutron irradiations 112Figure 7 1 Input spectra for Monte Carlo simulation. The spectra are measured by INER and modified for Geant4 GPS input format. 119Figure 7 2 Comparison of simulation data with measurement data. Dots represent the simulation data with 20 points p

er decade. The continuous line shows the measurement data in INER’s medium energy X-ray air kerma rate calibration system. 123Figure 7 3 Microdosimetry spectra of 80 kVp La transmission X-ray w/ and w/o iodine 125Figure 7 4 Microdosimetry spectra of 250 kVp X-ray w/ and w/o iodine 126Figure

7 5 Secondary electron spectra. (A) The secondary electron of 80 kVp La Fluorescence X-ray. (B) The secondary electron of 250 kVp X-ray 131Figure 7 6 The yields of DSB for different electron. The energy step is set 20 energies per decade in log scale in simulation. The cubic spline method is app

lied to do the interpolation. The fitting curve is shown in 10 eV per step. 133Figure 7 7 DSB yield. The DSB yield is the product of secondary electron and DSB cross-section. 134 List of TablesTable 4 1 The calculated LET using mean energy of secondary particles generated by 200 MeV proton irr

adiate on silicon 68Table 5 1 Evaluation index (EI) for LET in layer structure without SiGe. 88Table 5 2 EI for secondary particle yields in layer structure without SiGe. 90Table 5 3 EI for LET in layer structure with SiGe. 94Table 5 4 EI for secondary particle yields in layer structure

with SiGe. 95Table 5 5 Energy deposition analysis results for the layer structure without SiGe for 1010 neutron/proton incident 97Table 5 6 Energy deposition analysis results for the layer structure with SiGe for 1010 neutron/proton incident 98Table 7 1 Frequency mean lineal energy, dose me

an lineal energy and calculated RBE for each irradiation condition 127Table 7 2 Relative dose in cavity and wall for each irradiation condition in same fluence 128Table 7 3 Relative number of secondary electrons generated by unit dose and overall RBE 129 

添加波蘭液種創意麵點、麵包食譜開發之營養分析研究

為了解決R plot add line的問題,作者鄭小芬 這樣論述:

國內有許多麵點、麵包業者,為求成本考量及大量生產,會於麵包或麵點的製作配方中添加乳化劑、改良劑以降低成本,符合消費者對於口感上的喜好;但是添加食用化學劑雖然可以幫助麵糰的成品達到消費者的期望,但在健康上則是不健康的方式。本研究透過發放問卷調查民眾對於麵點、麵包的偏好為前測調查,透過統計分析結果,開發出添加波蘭液種創意麵點、麵包食譜開發;本研究之前測問卷以居住在台灣、台南居民為主,總計發放111份問卷,回收有效問卷108份,採用SPSS進行統計分析,將問卷中各項問題用敘述統計比較分析、交叉圖比較及Pearson卡方檢定相關係數分析是否有相關。透過標準食譜卡的製作、營養分析以及CCP點危害分析管

制;經由前測問卷的結果開發出添加波蘭液種創意麵點、麵包及標準食譜卡、營養分析,共開發設計7項添加波蘭液種創意食譜,分別為麵點類:「紫薯於泥包子」、「山藥燕麥饅頭」、「紅藜芝麻饅頭」;麵包類中式口味:「麵包超人」、「高麗菜菇菇麵包」,西式口味:「枸杞地瓜奶酥麵包」、「暗黑皇后」,以嘉南藥理大學學生、教職員作為品評測試員,進行消費者滿度調查,共計64名測試員;其各項成品整體接受度平均值為「紅藜芝麻饅頭整體接受度3.81」、「山藥燕麥饅頭整體接受度3.81」、「紫薯於泥包子整體接受度4.05」、「高麗菜菇菇麵包整體接受度4.20」、「暗黑皇后整體接受度4.09」、「枸杞地瓜奶酥麵包整體接受度4.30

」、「麵包超人整體接受度4.34」;根據品評測試分析顯示高麗菜菇菇麵包、枸杞地瓜奶酥麵包、麵包超人整體接受度最高,為本次研究開發成品中,整體接受度平均值前三名,顯示出測試者偏好包有內餡之麵點、麵包;其次前測問卷之偏好性之產品類別,以西式麵包為最多,佔整體百分比69.4%,與品評測試整體接受度最高的高麗菜菇菇麵包、枸杞地瓜奶酥麵包、麵包超人,三項成品皆為西式麵包類,與前測問卷結果相符。 在營養分析部分根據每日國人膳食營養素,參考攝取量之每日上限攝取量作建議。脂肪含量以紫薯於泥包子最低,為1.6g/ 100g;鈉含量部分以紫薯於泥包子為最低,為392.0mg/100g;鈣含量以暗黑皇后最高,為2

54.4mg/100g;總熱量以紫薯於泥包子為最低,為220.1kcal;紫薯於泥包子內餡部分也皆以食物的原型、原味去呈現,若想選擇熱量較低成品可以選擇。就脂肪、鈉、鈣、總熱量進行比較,以紫薯於泥包子最為推薦,也較符合健康訴求,但在品評測試中紫薯於泥包子整體接受度為4.05,與整體接受度最低的紅藜芝麻饅頭、山藥燕麥饅頭皆為無添加過多食材、調味的成品,即便有健康食品的訴求,但民眾在接受度上還是比較偏好口味稍微豐富的成品,建議可以添加一些乾性類的果乾提升口感度及整體豐富度,來取代過多的調味添加。本研究開發設計7項添加波蘭液種創意食譜可提供日後麵點、麵包業者以及一般民眾做為參考。在品評測試部分麵點類

整體接受度較麵包類低,若想再增添風味,建議可以調整用粉比例或添加其乾性原物料等。