KV4900的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列問答集和資訊懶人包

長庚大學 電子工程學系 陳始明所指導 Udit Narula的 超大積體電路中石墨烯化銅互聯線的製程方法研究 (2017),提出KV4900關鍵因素是什麼,來自於ULSI互連、石墨烯合成方法、Graphenated銅、電遷移。

而第二篇論文國立中正大學 化學工程研究所 李元堯所指導 張凱翔的 以熱氧化法製備海膽狀錳/一氧化錳/三氧化二錳核殼結構及其在場發射之應用 (2015),提出因為有 海膽狀三氧化二錳、三氧化二錳奈米線、熱氧化法、場發射的重點而找出了 KV4900的解答。

接下來讓我們看這些論文和書籍都說些什麼吧:

除了KV4900,大家也想知道這些:

超大積體電路中石墨烯化銅互聯線的製程方法研究

為了解決KV4900的問題,作者Udit Narula 這樣論述:

Recommendation Letter from the Thesis Advisor……………………………………Thesis/Dissertation Oral Defense Committee Certification……………………Acknowledgments……………………………………………………………………… iiiChinese Abstract……………………………………………………………………… ivEnglish Abstract…………………………………………………………………………vTable of Contents…………………………………………………………

……………viList of Figures…………………………………………………………………………ixList of Tables………………………………………………………………………… xvChapter 1: Introduction………………………………………………………………11.1 Brief History of ULSI/VLSI Interconnects’ Electromigration………11.2 Limitations of Copper Interconnects………………………………………21.3 Alternative to Copper Intercon

nects………………………………………31.4 Motivation of Dissertation …………………………………………………5Chapter 2: Prospects of Graphene……………………………………………………92.1 Properties and Applications of Graphene……………………………………92.2 Graphene Synthesis Methods……………………………………………………102.3 Need for a New Growth Method…………………………………………………102.4 Summary

of Prospects of Graphene……………………………………………12Chapter 3: Development of a New Method for Graphenated Copper……………133.1 Phase I: Sample Preparation using PVD method……………………………133.2 Phase I: Post-PVD Annealing …………………………………………………153.3 Phase I: Characterization ……………………………………………………163.4 Phase II: Sample Pr

eparation using PVD method………………………… 183.5 Phase II: Post-PVD Annealing & Characterization……………………… 193.6 Summary of PVD Based Growth Method ……………………………………… 23Chapter 4: Mechanism of PVD Based Growth Method………………………………244.1 Effect of a-C layer thickness on Graphene growth………………………244.2 Effect of ann

ealing time on Graphene growth…………………………… 264.3 Effect of annealing temperature on Graphene growth……………………294.4 Stress Analysis using Finite Element Modelling (FEM)…………………304.5 Explanation of Experimental Results using FEM………………………… 344.6 Summary of Growth Mechanism………………………………………………… 45Chapter 5: A

pplication of Design of Experiments (DoE)………………………465.1 An Introduction to DoE and its Need in Material Science……………465.1.1 An Introduction to DoE………………………………………………465.1.2 Need for DoE in Material Science…………………………………485.2 OFAT vs 2k Factorial Experiment Design………………………………… 495.2.1 One-Factor-at-a-T

ime Experiments…………………………………495.2.2 2k Factorial Design………………………………………………… 515.3 Qualitative DoE Analysis…………………………………………………… 515.4 Quantitative DoE Analysis……………………………………………………575.5 Filtered Quantitative Analysis…………………………………………… 635.6 Summary of Graphene Growth using DoE…………………………………… 66Chapter 6:

Prospects of Graphenated Copper……………………………………686.1 Electrical and Thermal Characteristics………………………………… 686.1.1 Thermal Properties’ Measurement………………………………… 686.1.2 Electrical Resistivity Measurement……………………………… 716.2 Atomic Level Finite Element Modelling…………………………………… 736.3 Summary of Graphenated C

opper as ‘Game-Changer’…………………… 78Chapter 7: Electrochemical Route for Copper on Graphenated Copper………797.1 Fundamental Principle………………………………………………………… 807.2 Experimental Overview………………………………………………………… 817.2.1 Materials…………………………………………………………………817.2.2 Methods……………………………………………………………………817.3 Copper on

Graphenated Copper…………………………………………………827.3.1 Raman Characteristics…………………………………………………827.3.2 SEM/EDS Analysis……………………………………………………… 837.3.3 Thickness Measurement…………………………………………………867.3.4 XRD Analysis…………………………………………………………… 877.4 Proposed Mechanism of Electroless Cu Deposition using Graphene……887.5

Summary of Copper on Graphenated Copper by Electrochemical Means…92Chapter 8: Conclusion and Future work……………………………………………948.1 Conclusion…………………………………………………………………………948.2 Contribution of the Dissertation……………………………………………958.3 Suggestions for Future Work………………………………………………… 96Bibliography or Reference

s………………………………………………………… 98List of Publications…………………………………………………………………114Journals…………………………………………………………………………………114Conference………………………………………………………………………………115Patent……………………………………………………………………………………117List of FiguresFigure 1.SEM image of a failed sample. [17]……………………………………3Figure 2.Typical package le

vel EM resistance trace.[18]……………………3Figure 3.a) Device under test (DUT) is a 100-μm Graphene wire in contact with Ti/Au electrodes, tested at 30 MA/cm2 at 523 K. b) Interconnect lifetime distribution at 523 K for different wire lengths and stress current densities. Each of the lines in the figure s

hows the lifetime of approximately ten wires, each tested individually.[25]………………………5Figure 4.Intercalation Doped Multilayer-Graphene-Nanoribbons.[26]……… 6Figure 5.Micro-scale aerosol-jet printing of graphene interconnects.[27]6Figure 6.EM performance comparison for Copper.[28]……………………………7Figure 7.Q

uality vs Cost map for Graphene synthesis methods. [51]………11Figure 8.Structure configurations of the samples for Phase I experimentation; a) sample S1 with 60 nm a-C layer underneath 800 nm Cu thin film, b) sample S2 with 60 nm a-C layer atop 800 nm Cu thin film, c) sample S3 with 800 nm Cu thin fil

m sandwiched between two 60 nm a-C layers and d) sample S4 with 60 nm a-C layer sandwiched between two 800 nm Cu thin films.[55]…………………………………………………………………14Figure 9.Sample S1, S1.1 and S1.2 preparation process using PVD…………14Figure 10.Sample S2 preparation process using PVD……………………………15Figure 11.Samp

le S3 and S4 preparation process using PVD………………… 15Figure 12.Chamber for Post PVD annealing.………………………………………16Figure 13.Recipe for Post PVD annealing…………………………………………16Figure 14.Raman Spectrum of annealed sample S1.[55]…………………………17Figure 15.Raman Spectrum of annealed samples S2, S3 and S4.[55]…………18F

igure 16.XRD analysis on deposited Cu surface shows presence of a high intensity {111} Cu peak in XRD analysis result……………………………… 19Figure 17.Raman Signatures for samples S1.1……………………………………20Figure 18.Raman Signatures for samples S1.2……………………………………20Figure 19.SIMS data for annealed samples S1, S1.1

and S1.2. [55]……… 22Figure 20.SIMS data for sample S1.2 before annealing, showing the presence of a-C layer beneath Cu film……………………………………………22Figure 21.a) Structure design for samples S1, S1.1 and S1.2 having 60 nm, 36 nm and 12 nm a-C layer sandwiched between 800 nm Cu and Si/SiO2(300 nm) substrate

, b) Schematic for annealing process, c) Raman Spectrum of annealed sample S1, d) Raman Spectrum of annealed sample S1.1, e) Raman Spectrum of annealed sample S1.2.[31]……………………………………………25Figure 22.I2D/IG and ID/IG vs anneal time measured by Raman Spectroscopy. Red lines are for the I2D/IG peak ratio

with the scale on the left y-axis, and blue lines are for the ID/IG peak ratio with the scale on the right y-axis. Dotted lines indicates the uncertainty of the trend as mentioned in the text.[31]…………………………………………………………26Figure 23.Raman Mapping of 10 µm × 10 µm area recorded in steps of 1 µm in all

directions for sample S1.1 annealed at 1020oC for a), b) 20 minutes and c), d) 30 minutes.[31]………………………………………………27Figure 24.Raman Mapping of 10 µm × 10 µm area recorded in steps of 1 µm in all directions for sample S1.2 annealed at 1020oC for a), b) 5 minutes and c), d) 8 minutes.[31]………………………………………

………………… 27Figure 25.Plots of Raman spectrum for sample S1.1 and S1.2 annealed at 920oC and 820oC for 50 mins.[31]…………………………………………………29Figure 26.ANSYS® simulation results of a)-c) Maximum Principal Stress distributions in the three samples at 1020oC, zoning into the maximum stress areas, d)-e) Von-Mi

ses stress in Cu at the corner of each sample, showing the delamination at the a-C/substrate and Cu/a-C interfaces in these sample. [56]……………………………………………………………………32Figure 27.ANSYS® simulation of thermal strain in Graphene on Cu at 1020oC.[31]…………………………………………………………………………… 33Figure 28.Governing reacti

ons [56], [80] for Graphene growth forming the basis for proposed mechanism of Graphene synthesis on Copper film; Here C represents Carbon atom, Gr represents Graphene, CH*/C* represent Hydrogen bonded-Carbon radical/Carbon radical, H* represent Hydrogen radical and ∆H represents heat. [31]………………………

……………………………………35Figure 29.Evolution of stress with decrease in a-C layer thickness. [31]……………………………………………………………………………………………39Figure 30.ANSYS® simulation results for samples S1, S1.1 and S1.2 showing total deformation in the samples which migrates from the corners to the center with the decrease in a

-C layer thickness. [31]…………………… 40Figure 31.ANSYS® simulation results a)-c) maximum von-Mises stress at a-C/Cu interface for sample S1 with respect to different annealing temperatures, d) plot of total deformation in samples S1, S1.1 and S1.2 vs different annealing temperatures. [31]……………………………………

42Figure 32.Relation between thermo-mechanical strain and Raman frequencies of G (ωG) and 2D (ω2D) modes; The data points for samples S1.1 and S1.2 (represented by red-dotted linearly fitted line) are lying parallel to the unstrained graphene line [87], [88] (purple dashed line) and indicate compres

sive strain. [31]……………………………………………………………44Figure 33.Brief History of concepts introduced for DoE in industrial applications……………………………………………………………………………48Figure 34.Illustration of an OFAT experiment in a photolithography experiment. [102]…………………………………………………………………… 50Figure 35.Main effect plots for A

ttribute-Response DoE Analysis of R1…54Figure 36.Interaction plots for Attribute-Response DoE Analysis of R1…54Figure 37.Optimum parameters for maximized response R1…………………… 55Figure 38.Raman Characteristics for experimental run with optimized parameters……………………………………………………………………………… 56Figure 39.Mai

n effect plots for Quantitative DoE Analysis of R2 (left) and R3 (right).[108]………………………………………………………………… 58Figure 40.Interaction plots for Quantitative DoE Analysis of R2 (left) and R3 (right).[108]………………………………………………………………… 58Figure 41.Contour plot analysis for response R2.[56]……………………… 61Figure 42.C

ontour plot analysis for response R3.[56]……………………… 61Figure 43.Plots of ID/IG and I2D/IG peak intensity ratios vs annealing time, for samples with thin a-C layer annealed at 1020oC.[56]……………63Figure 44.Optimum recipe for minimum ID/IG peak and maximum I2D/IG peak intensity ratios……………………………………………………

………………… 64Figure 45.Summary of application of DoE in Graphene Synthesis Process…66Figure 46.Thermal scanner images of Graphenated Cu and Cu thin film on Si/SiO2 substrate………………………………………………………………………69Figure 47.Raman Characteristics of Post-PVD Annealed sample for different annealing durations of (a)

20 minutes and (b) 50 minutes. [submitted for publication]……………………………………………………………………………70Figure 48.Thermal scanner results of Post-PVD Annealed sample for different annealing durations of (a) 20 minutes and (b) 50 minutes. [submitted for publication]……………………………………………………… 70Figure 49.Simple circuit m

odel for Graphenated Copper.……………………73Figure 50.Atomic level Finite Element Simulation steps……………………74Figure 51.Model of the Test structure redrawn using work by Tan et al. [118]………………………………………………………………………………… …74Figure 52.Atomic Flux Divergence calculation for FEM simulation of M1-M2 EM Test Struct

ure. [submitted for publication]………………………………76Figure 53.Resistance change for FEM simulation of M1-M2 EM Test Structure. [submitted for publication]…………………………………………76Figure 54.Average of Total-Average AFD for FEM simulation of M1-M2 EM Test Structure with and without Graphene………………………………………77Figure

55.Graphene sandwiched within copper interconnection.[submitted for publication]………………………………………………………………………79Figure 56.Graphenated Cu dipped in Copper Sulphate (CuSO4) solution for 3, 6, 9 and 12 hours. [submitted for publication]………………………… 81Figure 57.Interaction of electrolyte with Graphene sittin

g on Cu foil. (a) Optical image of untreated Mono-layer Graphene on Cu foil, (b) Optical image of electrolyte-treated Mono-layer Graphene on Cu foil, (c) Raman spectra of (a) and (b) using Horiba LabRAM HR Evolution Raman Spectrometer. [submitted for publication]…………………………………… 82Figure 58.SEM image

of (a) Fresh Graphenated Cu sample in SEI mode, (b) Sample treated with electrolyte for 3 hours in SEI mode (c) Sample treated with electrolyte for 12 hours in SEI mode. (d), (e) and (f) are the same images as (a), (b) and (c) respectively, but in TOPO mode. (Accelerating Voltage= 5 kV, Emission Cur

rent= 10 µA; Working Distance= 5.7-6.1 mm, Magnification= 2500x); Measurement taken using JEOL-JSM SEM with OXFORD instruments EDS. The grown islands are marked by white arrows. [submitted for publication]………………………………………………83Figure 59.EDS Mapping of Sample treated with electrolyte for 3 hours for C,

O and Cu (Accelerating Voltage= 15 kV, Magnification= 2500x, Counts= 3.5 million); Measurement taken using JEOL-JSM SEM with OXFORD instruments EDS. [submitted for publication]………………………………… 85Figure 60.EDS Mapping of Sample treated with electrolyte for 12 hours for C, O and Cu (Accelerating Voltage

= 15 kV, Magnification= 2500x, Counts= 3.5 million); Measurement taken using JEOL-JSM SEM with OXFORD instruments EDS. [submitted for publication]………………………………… 85Figure 61.Thickness of deposited Cu domains (measured using a Keyence confocal Optical Microscope VHX-5000) vs time of sample dipping/trea

tment with the electrolyte, with error bars indicated by the blue vertical lines. [submitted for publication]……………………………………………… 86Figure 62.XRD pattern for Fresh Graphenated Cu sample and Sample treated with electrolyte for 12 hours from PANalytical Empyrean XRD System. (#) Pure Copper peak of {200}

and {400} orientation, (*) Cubic Cu2O peaks of {111} and {222} orientation and (∆) Pure Copper peak of {111} orientation are observed. [submitted for publication]………………………………………87Figure 63.Cause of Polarization effect due to difference in work function of Copper (Cu) and Graphene (Gr) depicted by (

a) Density of States (DOS) diagram before contact (drawn using understandings from work done by Nagashio et al.[140]) (b) Energy band diagram for Graphenated Copper. Here dCu-Gr (3.26 Å [136]) represents equilibrium separation of the Graphene sheet from Cu metal surface, WFCu (5.22 eV [141]), WFGr (

4.40 eV [141]) and WF (4.367 eV [141]) are the work functions of Copper, Graphene and Graphene covered Copper (Graphenated Cu) respectively, ΔEf (WF - WFGr) is defined as the energy (per carbon atom) required to separate the graphene sheet from the Cu surface, ΔV is the potential change generated by

the metal-graphene interaction and Ef is the Fermi energy (drawn using the understandings from the work done by Giovannetti et al.[ 141]). [submitted for publication]…………………………………………………………89Figure 64.Charge transfer for Electroless Copper deposition using Graphenated Cu as a reducing agent. Here EF

(Gr-Cu) (~4.1 eV), EF(Cu2+/Cu) (5.19 eV [149]) and EF are the energy levels of Graphenated Copper, Cu Redox reaction and Electrolyte-treated Graphenated Cu respectively. [submitted for publication]…………………………………………………………90Figure 65.Trend of ΔEf with respect to dM-Gr for metals such as Pt, Al, Au, Ag,

Cu [141], [132] and Ni, Co, Ti [140]. [submitted for publication]…………………………………………………………………………………………… 91List of TablesTable 1:Cu Replacement suggested by ITRS [11]…………………………………4Table 2:Comparison of plots in Figure 3 and Figure 6……………………… 7Table 3:Raman Characteristics for annealed samples at 1020oC

for 50 mins [55] ………………………………………………………………………………………21Table 4:Thermo-mechanical properties for stress analysis using FEM…… 32Table 5:DoE Factors for Qualitative and Qualitative Analysis [108][56].52Table 6:Qualitative and Qualitative Full Factorial DoE Analysis [108][56] ……………………………………………………………………………

……………… 53Table 7:ANOVA statistics for Response R2 [56] ……………………………… 59Table 8:ANOVA statistics for Response R3 [56]…………………………………60Table 9:Map of Choice of Levels and Quality & Number of Graphene Layers [56]……………………………………………………………………………………… 62Table 10:Filtered DoE Factors [108] …………………………………………… 65Ta

ble 11:Output Responses for Filtered DoE Analysis [108] ……………… 65Table 12:Four Point Probe measurement for the experimental sample [submitted for publication] ……………………………………………………… 71Table 13:Feature sizes of the Test Structure used in FEM [118]………… 75Table 14:Model Parameters for the Test Structure

[72], [76][118]……… 75Table 15:Average Cu/O Atomic % for different samples from EDS ………… 84

以熱氧化法製備海膽狀錳/一氧化錳/三氧化二錳核殼結構及其在場發射之應用

為了解決KV4900的問題,作者張凱翔 這樣論述:

本研究利用一種簡單、低成本且單一步驟的熱氧化法,將微米級錳粉顆粒於大氣下製備出海膽狀一氧化錳/三氧化二錳之核殼結構,其熱氧化溫度為350至550 oC之間,並可利用生長溫度及時間控制三氧化二錳奈米線的直徑及其徑長比,結果發現溫度500 oC有最佳的結構表現,於恆溫24小時,其奈米線長度約為3-15 μm,針尖端直徑約為20-50 nm,其最佳徑長比為241.67。經由儀器分析,進一步探討所合成出的海膽狀結構的成長機制及材料分析,發現其表面上的奈米線直徑、長度、徑長比及密度會隨著溫度及氧化時間的增加而增加,而成長出的材料主要是中空結構,三氧化二錳奈米線均勻地呈現放射狀分布在球表面,球內層則為一

氧化錳,推測其所合成之材料為一氧化錳/三氧化二錳複合材料。由前面材料合成及分析之結果,知其合成此海膽狀結構之方法,接著進一步利用不同溫度下之成長的材料,進行場發射性質分析,我們發現最好的結果是起始電場及場增強因子分別為4.83 V/μm及3918.27,並將陽極使用綠色螢光粉(P22)應用於場發射光源,當施加電壓於5.1 kV(電場為17 V/μm)時輝度為12270 cd/m2,並兼具良好之均勻性以及熱穩定性。關鍵字:海膽狀三氧化二錳、三氧化二錳奈米線、熱氧化法、場發射