6061鋁合金7075的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列問答集和資訊懶人包

另外網站鋁合金6061-T6和7075-T651有什麼區別?讓我們重新系統認識 ...也說明:因爲合金元素含量越多,延展性就越低,不利於後期加工。 所以在實際工程中,多數情況都是使用鍛造鋁合金,比如常用的6061,7075,5083,1100,甚至 ...

國立臺灣師範大學 機電工程學系 劉傳璽、尤尚邦所指導 鄭凱維的 應用田口法於AZ31鎂合金薄板摩擦攪拌銲接之最佳參數設計 (2021),提出6061鋁合金7075關鍵因素是什麼,來自於鎂合金、摩擦攪拌銲接、田口法、抗拉強度。

而第二篇論文國立臺北科技大學 機械工程系機電整合碩士班 江卓培所指導 PAVAN SAI PAGADALA的 熱擠製鋁合金6061三階齒輪之研究:有限體積模擬與實驗的比較 (2021),提出因為有 Finite Volume Method、Aluminum extrusions、Gears、SLM、Simufact Forming、Simufact Additive的重點而找出了 6061鋁合金7075的解答。

最後網站5083,6061,7075有什麼區別?讓我們重新認識鋁合金 - 壹讀則補充:比如,6061-T6和7075-T651就是使用最多的兩種鋁合金。 因為它們有很好的重量強度比,也就是說它們重量輕,而強度也不錯,所以深受歡迎,特別是對於 ...

接下來讓我們看這些論文和書籍都說些什麼吧:

除了6061鋁合金7075,大家也想知道這些:

應用田口法於AZ31鎂合金薄板摩擦攪拌銲接之最佳參數設計

為了解決6061鋁合金7075的問題,作者鄭凱維 這樣論述:

本研究使用精密型五軸加工機,配合自行設計得夾具夾持厚度為1 mm之AZ31鎂合金薄板試片,固定於工作平台上進行摩擦攪拌銲接,使用田口法減少實驗次數並找出最適參數組合以得到最佳的抗拉強度,用L9的田口直交表設計加工參數,三種因子與各三種水準分別為攪拌頭肩部尺寸(2、2.5、3 mm)、主軸轉速(14000、15000、16000 rpm)以及進給速度(5、10、15 mm/min)。銲接後再進行銲道的表面觀察、微硬度試驗、金相顯微組織觀察、拉伸試驗及掃描式電子顯微鏡觀測分析,實驗後得到以下幾項結論:1. 銲道的孔洞缺陷直接影響銲道的抗拉強度,從拉伸試驗的斷裂面能看出其斷裂位置並非原本的對接邊

,而是銲道造成的孔洞處斷裂,抗拉強度最高的編號5試片其孔洞缺陷最小,抗拉強度最高,能判斷孔洞缺陷對銲道抗拉強度有非常大的負面影響。2. 最高的抗拉強度為編號五試片,其參數為2.5 mm肩部尺寸、15000 rpm、15 mm/min,抗拉強度為169.052 Mpa,約為母材強度的65%,最低的抗拉強度為編號1試片,其參數為2 mm肩部尺寸、14000 rpm及5 mm/min,抗拉強度為30.804 Mpa,為母材強度的11%。3. 編號5號試片出現延性破壞的酒窩狀(dimple)組織,顯示本試片在拉伸過程中產生了塑性變形,其他八組試片發現材料的斷面呈現劈裂面或自由表面,尚未完全塑性變形

便破斷,可以得知其他組別試片的破斷面皆為脆性破壞。4. 透過田口法,找出之最適參數為A2(2.5 mm肩部尺寸)、B2(15000 rpm)、C3(15 mm/min)參數組合,其剛好為實驗參數配置的編號五號試片。

熱擠製鋁合金6061三階齒輪之研究:有限體積模擬與實驗的比較

為了解決6061鋁合金7075的問題,作者PAVAN SAI PAGADALA 這樣論述:

The study introduces a novel technique, bidirectional hot extrusion and uses a selective laser melting (SLM) machine with Inconel 718 alloy to additive manufacturing of a helical-spur-helical three-stage gear. An experimental investigation is carried out on Aluminum 6061 alloy by performing the Ten

sile test on the cylindrical specimen machined based on ASTM E-8M standard to compare the estimated results with the available library data. To determine the effectiveness of the introduced techniques, firstly a computer-based design followed by analysis is carried out with the help of MSC Simufact

forming and MSC Simufact additive. The analysis includes the Finite Volume Method (FVM) for the triple gear and the Powder Bed Fusion (PBF) technique for gear die. Convergence test has been performed using the FVM with Aluminum 6061 as the material based on varying mesh element size. Simulation is e

xecuted at three different temperatures 350°C, 400°C, 450°C, and numerous attempts were made to determine the optimal time and velocity for obtaining a more favorable gear profile and the computation time. With a constant optimal time of 10s and varying the mesh element size between 0.5 to 1.6 mm wi

th the input velocity of 1.75, 2.0 & 2.25 mm/s, it is observed that the die filling rate is very accurate, and crack formation on the tooth bed is minimum. The input parameters of PBF in Simufact additive such as scan velocity, laser power, beam width, and layer thickness are optimized to evaluate t

he residual stresses and distortions formed in the fabrication of gear dies which yielded satisfactory results. IFUM (Institute for forming technology and forming machines) model is employed to evaluate the material flow rate and underfilling of the gear tooth. Considering the simulation results, ex

periments are performed to fabricate the gear die using the SLM technique and the triple-gear using monodirectional hot extrusion (due to unavailability of required bidirectional hot extrusion machine setup). Surface machining is performed to the gear die to obtain a favorable gear profile closely m

atching the simulation results.