50mm pvc管的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列問答集和資訊懶人包

遠東科技大學 機械工程系碩士班 王振興所指導 王聖方的 陽極氧化鋁膜/鋁線材微結構對電性之影響 (2021),提出50mm pvc管關鍵因素是什麼,來自於陽極氧化鋁、陶瓷包覆導線、兩段式陽極處理、氧化鋁膜。

而第二篇論文國立臺灣大學 電子工程學研究所 林宗賢所指導 林君豫的 高效節能時脈系統設計 (2021),提出因為有 溫補震盪器、千赫茲震盪器、高效鎖相迴路、開迴路小數除頻器的重點而找出了 50mm pvc管的解答。

接下來讓我們看這些論文和書籍都說些什麼吧:

除了50mm pvc管,大家也想知道這些:

陽極氧化鋁膜/鋁線材微結構對電性之影響

為了解決50mm pvc管的問題,作者王聖方 這樣論述:

導線結構大部分為外覆高分子PVC的金屬線,普遍不耐高溫、酸鹼、磨耗以及嚴苛氣候,PVC絕緣外層耐溫僅60℃,隨著PVC老化並脆化,絕緣性降低,陶瓷層優異的材料特性可以解決此高分子的使用限制,用以取代傳統導線,完全不會有過熱燃燒起火問題,本研究使用陽極處理氧化鋁,作為絕緣層,PVC體積電阻 >1012 Ω - cm ,但氧化鋁卻有 >1014 Ω - cm ,相差百倍。以鋁線為芯材,表面用陽極處理生成氧化鋁作為絕緣層,作法如下:鋁線當作陽極,陰極選取石墨板為惰性電極,草酸為電解溶液,通電使鋁線材表面氧化形成氧化鋁薄膜,其化學性穩定,不受酸鹼腐蝕,氧化鋁熔點2,072°C,即使500°C下,體積

電阻率仍有1014 Ω - cm ,介電擊穿電壓有18KV/mm,氧化鋁不可燃、耐酸鹼、幾乎沒有壽命侷限。習知陽極氧化鋁是高密度堆積六角形孔洞,可填塞色料發色,其孔洞緊密排列,且氧化鋁膜緊密附著在鋁基材,可完整均勻包覆鋁線,空氣中當電壓小於10000V時不導電,電阻為無窮大,但電壓大於10000V時,空氣就會被擊穿而導電,設計氧化鋁作為絕緣層,再有孔洞提供的空氣電阻,研究陽極氧化鋁當作導線絕緣層的可行性。以CVD和PVD在金屬上披覆陶瓷,難以避開披覆層剝落問題,本研究選用工業用純鋁,先研磨將鋁表層氧化層去除,再浸泡氫氧化鈉,為了清潔表面,接著浸泡硝酸溶液中和殘留氫氧化鋁,同時表面敏化,再以化學

拋光將表面平整化,以利於進行陽極處理時能平均分布電荷。鋁基材之表面粗糙度與化學拋光後表面粗糙度成正比,2000號砂紙研磨所得粗糙度為0.72μm,足以有利於後續氧化鋁生長,10%草酸50V生成之微結構孔洞小,且可生成厚度35.92μm,此厚度為最佳電阻>2000MΩ。因氧化鋁因成長張應力產生沿線材方向的裂紋,而在裂紋處電擊穿,雖然已達到高絕緣電阻,但裂紋缺陷有擊穿後電阻出現,其氧化鋁膜成長厚度約每增加10V之電壓,厚度增加1倍,使用兩段式陽極處理,第一段使用30V,第二段使用50V,經由第一段10min以上製造緻密表層,再加上第二段加速生長,以達到最佳絕緣,第一段30V陽極處理需要大於10mi

n,而第二段加速生長其需要大於30min才能生長出能抵抗1000V高壓之絕緣電阻,再經由披覆凡力水,先隔絕氧化鋁與大氣接觸吸收水份,並填補應力產生裂紋,達到最高絕緣電阻之導線,製作出來之AAO最高耐電壓1000V下接近∞,並進一步解決具氧化鋁外層導線的彎折裂開問題,撓曲90度仍能抵抗250V直流電壓,工作溫度達450℃。

高效節能時脈系統設計

為了解決50mm pvc管的問題,作者林君豫 這樣論述:

在系統中需要多組不同的時脈來提供給不同的模組運作。本篇論文提出一高效節能之時脈系統架構,著重在只使用單一晶體來實現兆赫茲與低功耗千赫茲輸出並降低溫度效應下所造成的頻率偏移。此架構共包含為四個作品如下所述。 本論文的第一個晶片為溫度補償晶體震盪器,實現於180奈米製程。我們使用多組受電壓控制電容來逼近一個多項次補償函數。用此方式來取代傳統複雜的補償,可以有效地節省面積與功耗。在攝氏-30度到90度的溫度範圍下可將溫度偏移由 ±12 ppm改善至 ±3.75 ppm,此晶片面積為0.282平方毫米。 本論文第二個晶片32.768千赫茲時脈產生器,實現於180奈米製程。我們提出一頻率校

正系統,重複使用時脈系統內的唯一一顆兆赫茲晶體來產生千赫茲輸出並且維持整體功耗小於1微安培,在極端的溫度範圍以一兩位元溫度感測器做偏移補償。在攝氏-50度到105度的範圍內達到±20 ppm的頻率偏差,此晶片面積為0.364平方毫米。 本論文第三顆晶片為一整數倍率時脈產生器用於提供開迴路小數除頻器的輸入訊號,實現於90奈米製程。我們使用次取樣來穩定迴路使其能夠使用注入式鎖定之技術來實現高效能的時脈輸出。在晶片面積0.26平方毫米以及0.5毫瓦功耗下,產生一2.4千兆赫茲370飛秒的時脈抖動之輸出頻率。 本論文第四顆晶片為一開迴路小數除頻器,實現於90奈米製程。在此作品中我們大幅度的

降低最佔功耗與面積的數位時間轉換器模組,因此能夠於0.008平方毫米的面積下產生0.625-200兆赫茲的時脈輸出並且達到300飛秒的時脈抖動以及1.5毫瓦的功耗。