透明導電薄膜的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列問答集和資訊懶人包

透明導電薄膜的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦顧鴻壽寫的 觸控面板技術及其應用 和陳建林的 氧化鋅透明導電薄膜及其應用都 可以從中找到所需的評價。

這兩本書分別來自五南 和化學工業所出版 。

南臺科技大學 光電工程系 許進明所指導 劉彥齊的 多層預裂型ITO薄膜彎曲裂化對水氣穿透率影響之研究 (2021),提出透明導電薄膜關鍵因素是什麼,來自於氧化銦錫、彎曲機械強度、水氧穿透率。

而第二篇論文國立嘉義大學 電子物理學系光電暨固態電子研究所 高柏青所指導 沈秉訓的 鐵金屬種子層對WO3/Cu/WO3透明導電薄膜之影響及其在透明有機發光二極體之應用 (2021),提出因為有 三層式電極(DMD結構)、熱蒸鍍、銅、三氧化鎢的重點而找出了 透明導電薄膜的解答。

接下來讓我們看這些論文和書籍都說些什麼吧:

除了透明導電薄膜,大家也想知道這些:

觸控面板技術及其應用

為了解決透明導電薄膜的問題,作者顧鴻壽 這樣論述:

  本書的基本架構是由九個章節所構成的,將從基礎性的觸控面板技術、延伸至觸控面板技術相關的材料及其零組件、乃至於目前觸控面板技術相關的應用領域及其相關特性等

多層預裂型ITO薄膜彎曲裂化對水氣穿透率影響之研究

為了解決透明導電薄膜的問題,作者劉彥齊 這樣論述:

軟性有機發光二極體(OLED) 具有輕、薄、可彎曲、不易脆裂等等符合人性化的優勢,能融入如軟性太陽能電池(Solar Cells)、汽機車車燈、穿戴裝置、區域照明等應用,ITO透明導電膜被廣泛使用的,但是在過度彎曲時會因為應力與應變產生龜裂,造成其電性劣化且不穩定,而裂紋也會對阻氣產生影響,因此開發具優良彎曲機強度且具有一定阻氣能力的透明導電膜是必要的。 本研究欲藉由使用預裂型ITO薄膜分析薄膜彎曲裂化與水氣穿透情形之關係。研究方法是製作5層的預裂/堆疊ITO薄膜,總厚度為200nm,在鍍膜過程中使用彎曲鍍膜,並對每一鍍層進行預裂,彎曲鍍膜半徑設計為6~12mm,而預裂半徑也設定為6

~12mm,完成後之5層預裂型ITO薄膜進行150 oC 1hr的熱退火,量測動態彎曲測試ITO膜的阻抗,使用光學鈣測試法觀察薄膜劣化之水氣穿透情形,並由隨時間變化之光穿透率計算WVTR值。 研究結果顯示,當5層預裂型ITO薄膜的預裂半徑(PC)與鍍膜彎曲半徑(SC)為 PC/SC=8mm/8mm時,ITO薄膜可以得到最佳的彎曲機械強度,在1000次半徑13mm的彎曲測試後,其電阻值變化率(ΔR/Ro)可以由單層99%下降到30%,在光學鈣測試法的觀察中得知,5層預裂型ITO薄膜的水氣穿透路徑主要為裂痕,而且裂痕的密度越高鈣膜氧化速度越快,顯示裂痕密度與水氣穿透率有相對應性,在PC/SC

=10mm/10mm條件下的WVTR值為9.04 〖×10〗^(-1) g/m²/day相比單層 1.31 g/m²/day,水氣穿透率有下降的趨勢,所以使用五層預裂型ITO有助於同時改善彎曲機械特性與阻氣率。

氧化鋅透明導電薄膜及其應用

為了解決透明導電薄膜的問題,作者陳建林 這樣論述:

鐵金屬種子層對WO3/Cu/WO3透明導電薄膜之影響及其在透明有機發光二極體之應用

為了解決透明導電薄膜的問題,作者沈秉訓 這樣論述:

在本論文研究中,探討Fe種子層對WO3/Cu/WO3 (WCW)透明導電薄膜在電性、光學以及結構等性質的影響。Fe種子層以及WCW多層薄膜在玻璃基板上以熱蒸鍍方法製備。WCW薄膜的導電性與光穿透性會隨著Fe種子層引入於WO3/Cu介面而明顯增加。相較無種子層的WCW薄膜(平均光穿透率61.87 %與片電阻22.98 ohm/sq),具Fe無種子層的MAM薄膜樣本具有較低的片電阻(7.80 ohm/sq)與較高的平均光穿透率(73.93 %),兩薄膜品質因數分別計算為3.71×10-4 ohm-1與6.32×10-3 ohm-1。由於WO3薄膜表面的金屬Cu連續性分佈程度和Cu薄膜厚度與WO3

表面性質相依,因此WO3表面性質對於WCW多層結構薄膜的導電性與光穿透性而言是非常重要的因子。當厚度1 nm的Fe種子層引入後,沈積在WO3表面的Cu薄膜的連續性分佈所需之門檻厚度可由原本的15 nm明顯地降低至12 nm。由掃瞄式電子顯微鏡、原子力顯微鏡量測結果發現,在引入Fe種子層WO3基底層上沈積12 nm之Cu薄膜表面會呈現較佳的表面覆蓋性(孔洞率 =22.69% vs. 7.91%)與平整性(Rrms = 1.92 nm vs. 0.56 nm)。經由接觸角的量測結果可知,Cu金屬薄膜的表面形貌改變可歸因於WO3薄膜與Cu薄膜間的良好接觸與附著性所致。經由X光繞射的量測結果可知,因具

較高表面能的Fe種子層提供了有利於Cu沉積的成核表面,引入後可有效抑制Cu原子的團聚並導致Cu薄膜的晶粒較小(14.06 nm vs. 10.45 nm)。因此,相較無Fe種子層的WO3表面,Cu薄膜沉積於具Fe種子層的WO3表面會較平滑且具有較低的門檻厚度(15 nm vs. 12 nm )。當使用WCW多層結構薄膜作為反式穿透型有機發光二極體(結構:ITO/Alq3:Na2CO3/Alq3/BCP/NPB/陽極)的陽極材料時,相較無Fe種子層之陽極(WO3(20 nm)/Cu(15 nm)/WO3(20 nm))之元件(Vturn-on = 5 V、Ltotal = 1927 cd/m2、

ηc= 0.64 cd/A、ηp = 0.50 lm/W),具Fe種子層之陽極(WO3(20 nm)/Fe(1 nm)/Cu(12 nm)/WO3(20 nm))的有機發光二極體具有較佳電激發光特性,其中包含:較低的驅動電壓(4.5 V)、較高的輝度(2250 cd/m2)、電流效率(0.72 cd/ A)以及功率效率(0.59 lm/W)。