渦電流分選原理的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列問答集和資訊懶人包

渦電流分選原理的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦高根英幸寫的 汽車最新高科技(全彩修訂版) 和張連生的 2020 星推薦·一本題記 高考物理都 可以從中找到所需的評價。

另外網站渦電流-破碎機價格 - 詠興機械工業有限公司也說明:詠興機械工業有限公司YHUNG-HSING · 渦電流 Eddy Current · 渦電流 · 渦電流金屬分選機原理 · 偏心式磁轂設計的特色和優點 · 公司地址: · 電話(國內客戶): · 電話(國外客戶):.

這兩本書分別來自晨星 和天津人民出版社所出版 。

中原大學 電機工程研究所 謝冠群、謝宏毅、邱謙松所指導 張緯德的 半橋諧振感應加熱鍋的實驗研究 (2021),提出渦電流分選原理關鍵因素是什麼,來自於感應加熱爐、半橋諧振轉換器、強制換向控制、零電壓切換。

而第二篇論文國立虎尾科技大學 材料科學與工程系材料科學與綠色能源工程碩士班 李景恒所指導 張易中的 高周波感應硬化與前熱處理對AISI 6140和AISI 5140鋼料表面硬化特性之影響 (2021),提出因為有 滲碳、高周波表層感應硬化、線圈加熱功率、線圈移動速率、硬度分佈的重點而找出了 渦電流分選原理的解答。

最後網站涡流分选机的作用原理,应用范围及特点 - 知乎专栏則補充:工作时,在分选磁辊表面产生高频交变的磁场,当有导电性的有色金属经过磁场时,会在有色金属内感应出涡电流,此涡电流本身会产生与原磁场方向相反的磁场, ...

接下來讓我們看這些論文和書籍都說些什麼吧:

除了渦電流分選原理,大家也想知道這些:

汽車最新高科技(全彩修訂版)

為了解決渦電流分選原理的問題,作者高根英幸 這樣論述:

  油電混合車原來分成串連和並連式?   車廠為了降低車禍發生率,減低車禍傷害,研發各種高科技?   汽車內部的高科技結晶,在此全彩呈現!   在美麗的烤漆底下,有著車廠努力研發的高科技心血,讓人坐得更舒適,駛得更快速安全且環保:引擎運作、燃料原理、煞車防鎖死裝置、藏在內部各處的安全氣囊……   那些無法一眼看到的高科技心血,如今用一張張原廠授權彩色圖解,搭配清晰解說,讓你一探究竟各大汽車廠與零件商研發出來的各種汽車高科技:   ◎ 環保的高科技   ◎ 防範事故的高科技   ◎ 減輕傷害的高科技   ◎ 驅動系統與周邊的高科技   ◎ 車體的高科技   ◎ 舒適導向

的高科技   ◎ 高級車的高科技   本書特色   1、一覽汽車科技新發展!   為什麼加油站有車用尿素?為什麼製造汽車需要晶片?汽車如何兼顧強大的馬力與省油?一本書帶你一網打盡當今重要汽車科技!   2、全彩圖解一目了然!   各車廠與汽車零件商提供原廠設計圖與拍攝相片,呈現汽車科技實際運作的樣貌,讓知識不再只是文字,複雜概念一目了然。

半橋諧振感應加熱鍋的實驗研究

為了解決渦電流分選原理的問題,作者張緯德 這樣論述:

摘要 IAbstract II目錄 III圖目錄 V表目錄 VII第一章 緒論 11.1 文獻回顧 11.2 研究動機 11.3 研究方法 31.4 內容綱要 4第二章 電磁感應加熱原理與分析 52.1 電磁感應加熱原理 52.2 集膚效應 62.3 感應加熱技術 82.3.1單端架構 92.3.2半橋架構 102.3.3全橋架構 11第三章 半橋諧振轉換器感應加熱爐原理與分析 123.1 半橋諧振轉換器 123.1.1 工作原理 153.1.2 電路動作分析 163.1.3 共振電磁感應加熱電路簡

介 233.1.4 控制方法 243.1.5 MCU驅動信號產生與分析 253.1.6 驅動器分析 26第四章 設計考量 284.1 半橋串聯諧振逆變器的設計考量 284.1.1 線圈設計 284.1.2 電容選擇 284.1.3 功率晶體選擇 294.1.4 操作頻率選用 30第五章 設計實例 315.1設計規格 315.2感應加熱共振元件的選擇 315.2.1 線盤設計 315.2.2 電容的設計 335.2.3 元件的選擇 335.2.4 鍋具的選擇 345.2.5 MCU的控制方法 355.2.6 保護電路 355.

2.7 設計結果 36第六章 量測與分析 386.1實驗裝置建構 386.2量測方法 386.3量測項目與分析 386.3.1 鑄鐵鍋實驗(F鍋) 396.3.2 不鏽鋼鍋實驗 42第七章 結論與未來展望 507.1結論 507.2未來展望 50參考文獻 51圖目錄圖 1 集膚效應(Skin effect)示意圖 6圖 2 (a)渦流(eddy current)的產生示意圖和(b)電流密度J 7圖 3 單端諧振逆變器基本架構 9圖 4 半橋串聯諧振逆變器基本架構 10圖 5 全橋串聯諧振逆變器基本架構 11圖 6 電路動作個階段電

路圖(a) 階段1 (b) 階段2 (c) 階段3 及 (d) 階段4 14圖 7 半橋感應加熱器的系統方塊圖 15圖 8 半橋串聯共振電磁感應熱功率級電路 16圖 9 線盤和鍋具的等效電路 16圖 10 串聯諧振等效電路 17圖 11 串聯諧振頻率截止圖 19圖 12 共振電容電壓和開關頻率的關係[6] 21圖 13 高頻感應加熱電路系統方塊圖 22圖 14 IH功率級之實施電路 23圖 15 控制系統方塊圖 24圖 16 IH功率級之實施電路 25圖 17 ST L6388 的系統方塊圖 27圖 18 聚丙烯電容 28圖 19 (a)

一圈線盤及(b)同心雙繞線盤[25] 32圖 20 感應線盤 32圖 21 串聯共振加熱爐之保護電路圖 35圖 22 串聯共振加熱爐之電路圖 36圖 23 實體裝置圖 36圖 24 33kHz 25A 500W 39圖 25 30kHz 34A 1kW 39圖 26 26kHz 44A 1.5kW 40圖 27 25kHz 51A 2kW 40圖 28 24.5kHz 61A 2.5kW 41圖 29 24kHz 70A 3kW 41圖 30 40kHz 23A 500W 42圖 31 31kHz 35A 1kW 43圖 32 30kHz

38A 1.5kW 43圖 33 28kHz 39A 2kW 44圖 34 26kHz 53A 2.5kW 44圖 35 24.5kHz 69A 3kW 45圖 36 30kHz 20A 500W 46圖 37 27kHz 32A 1kW 46圖 38 24kHz 29A 1.5kW 47圖 39 22kHz 46A 2kW 47圖 40 21.5kHz 54A 2.5kW 48圖 41 20kHz 70A 3kW 48表目錄表 1 感應加熱方式 8表 2 聚丙烯電容0.47μF/500V 對頻率的特性 29表 3 STGWA50IH65DF

的相關極間電容特性 29表 4 設計規格 31表 5 L6388控制器之接腳名稱與功能 33表 6 線盤和鍋具之間對應頻率的關係參數 34表 7 鍋具對應頻率的功率輸出與溫度表 49

2020 星推薦·一本題記 高考物理

為了解決渦電流分選原理的問題,作者張連生 這樣論述:

星推薦·一本題記系列叢書,按照學科共分九大學科十本圖書。本套叢書適用于學生高考複習。《一本題記》從各地名校模擬題、聯考題中,篩選出典型的,幫助學生練習自己薄弱的部分。 本冊從質點的直線運動,相互作用,牛頓運動定律,曲線運動等多方面內容進行設置。對題目進行考點式編排,題組式訓練,對疑難點肢解,易混點明晰,全面進行試題分析。通過對動量和近代物理考查內容的分析,完善學生的知識結構,為學生解決問題提供更多有力工具,有利於學生更好地認識實際現象,理解更深層次問題。

高周波感應硬化與前熱處理對AISI 6140和AISI 5140鋼料表面硬化特性之影響

為了解決渦電流分選原理的問題,作者張易中 這樣論述:

本研究使用AISI 5140、AISI 6140合金鋼試棒做為實驗組再以AISI 1045碳鋼做為比對,個別做正常化、850℃/880℃調質、850℃/880℃滲碳兩小時與四小時等七種方法進行前熱處理,前熱處理後試棒再使用四個感應硬化參數進行高周波感應硬化。四個感應硬化參數由兩種線圈輸入功率(95kW與90kW)及兩種線圈走速(20mm/s與25mm/s)組合而成,再使用微小維氏量測表層到心部的硬度分布以及利用顯微鏡觀察顯微組織變化。經880℃調質及滲碳前熱處理的AISI 6140、AISI 5140 合金鋼試棒的表面最高硬度值如後: AISI 6140 合金鋼經880℃滲碳兩小時與經880

℃調質熱處理試棒的表面最高硬度為781HV與660HV; AISI 5140 合金鋼經880℃滲碳兩小時與經880℃調質熱處理試棒的表面最高硬度為720HV與640HV。由此看出增加表層含碳量能夠增加表層的最高硬度。AISI 6140、AISI 5140合金鋼試棒分別使用880℃調質熱處理與880℃滲碳熱處理後以95KW-20mm/s參數感應硬化後硬度量測結果如後,發現AISI 6140試棒調質熱處理表層為硬度為806HV,有效硬化深度為1.85mm;AISI 5140試棒調質熱處理表層為硬度為773HV,有效硬化深度為1.76mm;AISI 6140試棒滲碳兩小時熱處理表層硬度為915HV,

有效硬化深度為1.98mm; AISI 5140試棒滲碳兩小時熱處理表層硬度為865HV,有效硬化深度為1.97mm,發現滲碳可提升表層最高硬度及有效硬化深度。以AISI 6140、AISI 5140、AISI 1045鋼料試棒經880℃滲碳熱處理個別滲碳兩小時與四小時再分別使用95kW-20mm/s參數感應硬化後硬度量測結果,AISI 6140合金鋼滲碳兩小時的有效化深度為1.98mm,滲碳四小時的有效硬化深度為2.13mm; AISI 5140合金鋼試棒滲碳兩小時的有效化深度為1.89mm,滲碳四小時的有效硬化深度為2.08mm; AISI 1045碳鋼滲碳兩小時的有效化深度為1.88mm

,滲碳四小時的有效硬化深度為2.00mm。由此可看出增加滲碳時間可增加有效硬化深度。AISI 6140鋼棒經880℃滲碳兩小時後分別以95kW-20 mm/s、90kW-25mm/s參數感應硬化後硬度量測結果,經由95kW-20 mm/s參數感應硬化試棒的表層最高硬度為915HV,有效硬化深度為1.98mm;90kW-25mm/s參數感應硬化試棒的表層最高硬度為827HV,有效硬化深度為1.37mm。可看出感應硬化參數對鋼料的表層硬度與有效硬化深度有顯著的影響。由實驗結果得知AISI 6140合金鋼相較於AISI 5140合金鋼不論是經調質或滲碳前處理皆有較高的有效應化深度以及最高表層硬度值,

其原因為AISI 6140合金鋼中加入釩元素能有效提升其表面最高硬度及有效硬化深度,在同樣前熱處理與材料的狀況時,比較以95kW-20mm/s與90kW-25mm/s兩組參數感應硬化後硬度量測結果,發現較慢線圈走速及較高線圈輸入功率,因入熱量的提升可使表層組織較快且較大範圍變態成沃斯田體,感應硬化後變態成較多的麻田散體,可有效提升試棒表層硬度及有效硬化深度。透過觀察XRD的角度可知道AISI 5140合金鋼三支主峰分別位於44.60°(110)、64.80°(200)、82.21°(220) 可以看出介於鐵的繞射峰與鉻的繞射峰之間,而XPS可透過電子伏特確認原子鍵結,將單元素能譜圖經過分峰後可

以看出兩個峰分別是530eV、531.8eV分別對映V-O與V-C-O。