氧離子o2-的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列問答集和資訊懶人包

氧離子o2-的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦伊廷鋒,謝穎寫的 鋰離子電池電極材料 和伊廷鋒謝穎的 鋰離子電池電極材料都 可以從中找到所需的評價。

這兩本書分別來自崧燁文化 和千華駐科技有限公司所出版 。

國立虎尾科技大學 電子工程系碩士班 張益新所指導 黃政儒的 以固態反應法製備GaNbO4共摻(Eu3+, La3+)離子之結構與發光特性研究 (2021),提出氧離子o2-關鍵因素是什麼,來自於螢光粉、光致發光、固態反應法、GaNbO4、Eu3+離子。

而第二篇論文大同大學 化學工程與生物科技學系(所) 林正裕所指導 施昶鵬的 具離子摻雜尖晶石鋰鎳錳氧於鋰離子電池正極材料之研究 (2020),提出因為有 摻雜、氟離子、噴霧乾燥、LiNi0.5Mn1.5O4、尖晶石、釩離子的重點而找出了 氧離子o2-的解答。

接下來讓我們看這些論文和書籍都說些什麼吧:

除了氧離子o2-,大家也想知道這些:

鋰離子電池電極材料

為了解決氧離子o2-的問題,作者伊廷鋒,謝穎 這樣論述:

  鋰離子電池因其具有比能量大、自放電小、重量輕和環境友善等優點而成為行動式電子產品的理想電源,也是電動汽車和混合電動汽車的首選電源。因此,鋰離子電池及其相關材料已成為世界各國科研人員的研究熱門議題之一。   鋰離子電池主要由正極材料、負極材料、電解液和電池隔膜四部分組成,其性能主要取决於所用電池內部材料的結構和性能。而電極材料决定着電池的性能,同時也决定電池50%以上的成本。   本書結合作者多年來電化學及化學電源科研與教學經驗,介紹了各類電極材料以及電極的制備方法與結構,着重介紹了高性能鋰離子電池正極的設計與功能調控,包括了:層狀電極材料、尖晶石電極、磷酸鹽正極材料

、矽酸鹽正極材料、碳負極材料、鈦基電極材料以及鈦酸鋰電極材料等多種電極材料的設計與性能。適宜從事電池電極設計與製造的科研及技術人員參考。

以固態反應法製備GaNbO4共摻(Eu3+, La3+)離子之結構與發光特性研究

為了解決氧離子o2-的問題,作者黃政儒 這樣論述:

本研究以固態反應法製備GaNbO4作為發光主體,並摻雜不同濃度的Eu3+與La3+離子作為發光中心,利用X光粉末繞射儀、掃描式電子顯微鏡、紫外-可見光光譜儀與光致發光光譜儀進行其結構和發光特性之鑑定,探討其製備條件與不同Eu3+離子摻雜濃度對晶體結構、光致發光特性之影響。 XRD繞射分析結果顯示在煆燒溫度1250 °C持溫4小時的條件下,可以得到單斜晶系GaNbO4之結晶結構。由紫外-可見光光譜圖觀察到GaNbO4:Eu3+螢光粉在200 - 400 nm間具有強吸收帶,主要來自於主體晶格(NbO4)3-陰離子團內部氧離子(O2-)與鈮離子(Nb5+)間電荷轉移帶的吸收所導致。

激發光譜顯示在225 - 310 nm間出現寬廣的激發帶,是由於Nb5+ - O2-間之電荷轉移躍遷所造成;在395 nm的激發下,其放射光譜由Eu3+離子的5D0→7F1,2,3,4,5電子躍遷所構成,發現最佳Eu3+離子的摻雜濃度為90 mol%。另外在固定Eu3+離子濃度為90 mol%的情況下,摻雜不同濃度的La3+離子以調變Eu3+離子所處晶格環境進而改變其發光性質,放射光譜顯示發光強度與未摻雜La3+離子之發光強度相比較,可以發現摻雜後的發光強度高於未摻雜的強度。由SEM表面形態圖觀察到摻雜不同濃度的Eu3+與La3+離子對螢光粉體的外型並無明顯差異,不論摻雜濃度之多寡,粉

體皆具有平滑表面並產生團聚現象。

鋰離子電池電極材料

為了解決氧離子o2-的問題,作者伊廷鋒謝穎 這樣論述:

  鋰離子電池因其具有比能量大、自放電小、重量輕和環境友善等優點而成為行動式電子產品的理想電源,也是電動汽車和混合電動汽車的首選電源。因此,鋰離子電池及其相關材料已成為世界各國科研人員的研究熱門議題之一。   鋰離子電池主要由正極材料、負極材料、電解液和電池隔膜四部分組成,其性能主要取决於所用電池内部材料的結構和性能。而電極材料决定着電池的性能,同時也决定電池50%以上的成本。   本書結合作者多年來電化學及化學電源科研與教學經驗,介紹了各類電極材料以及電極的制備方法與結構,着重介紹了高性能鋰離子電池正極的設計與功能調控,包括了:層狀電極材料、尖晶石電極、磷酸鹽正極材料、矽酸鹽正極材料、碳

負極材料、鈦基電極材料以及鈦酸鋰電極材料等多種電極材料的設計與性能。適宜從事電池電極設計與製造的科研及技術人員參考。 作者簡介 伊廷鋒   大學教授、博士生導師。   在電池電極材料方面,至今已發表作者或通訊作者SCI期刊論文102篇,H因子為29,他引2600餘次,影響因子加和超過415,ESI高引論文9篇,先後為Nature Communications、無機化學學報等中外60餘種期刊審稿500餘篇,合作出版《動力電池技術與應用》和《動力電池材料》專著2部。   在教學方面主要從事物理化學、應用電化學、化學電源方面的教學工作。 第1 章 鋰離子電池概述 1.1 鋰離子電池概

述 1.1.1 鋰離子電池的發展簡史 1.1.2 鋰離子電池的組成及原理 1.1.3 鋰離子電池的優缺點 1.2 鋰離子電池電極材料的安全性 1.2.1 正極材料的安全性 1.2.2 負極材料的安全性 1.3 鋰離子電池電極材料的表徵與測試方法 1.3.1 物理表徵方法 1.3.2 電化學表徵方法 1.3.3 電極材料活化能的計算 1.4 鋰離子電池隔膜 1.4.1 鋰離子電池隔膜的製備方法 1.4.2 鋰離子電池隔膜的結構與性能 1.5 鋰離子電池有機電解液 參考文獻 第2 章 鋰離子電池層狀正極材料 2.1 LiCoO2 電極材料 2.1.1 LiCoO2  電極材料的結構 2.1.2

LiCoO2 電極材料的電化學性能 2.1.3 LiCoO2 的製備方法 2.1.4 LiCoO2 的摻雜 2.1.5 LiCoO2 的表面改性 2.2 LiNiO2 正極材料 2.2.1 LiNiO2 的製備方法 2.2.2 LiNiO2 的摻雜改性 2.3 層狀錳酸鋰(LiMnO2) 2.3.1 層狀錳酸鋰的合成 2.3.2 不同的形貌對層狀錳酸鋰的電化學性能的影響 2.3.3 層狀錳酸鋰的摻雜改性 2.4 三元材料(LiNi1/3Co1/3Mn1/3 O2) 2.4.1 LiNi1/3 Co1/3Mn1/3O2 材料的結構 2.4.2 LiNi1/3 Co1/3Mn1/3O2 材料的合成

2.4.3 不同形貌對LiNi1/3 Co1/3 Mn1/3 O2 材料性能的影響 2.4.4 LiNi1/3 Co1/3Mn1/3O2 材料的摻雜改性 2.4.5 LiNi1/3 Co1/3Mn1/3O2 材料的表面包覆 2.5 富鋰材料 2.5.1 富鋰材料的結構和電化學性能 2.5.2 富鋰材料的充放電機理 2.5.3 富鋰材料的合成 2.5.4 富鋰材料的性能改進 參考文獻 第3 章 尖晶石正極材料 3.1 LiMn2O4 正極材料 3.1.1 LiMn2O4 正極材料的結構與電化學性能 3.1.2 LiMn2O4 正極材料的容量衰減機理 3.1.3 LiMn2O4 正極材料製備方

法 3.1.4 提高LiMn2 O4 正極材料性能的方法 3.2 LiNi0.5Mn1.5O4 3.2.1 LiNi0.5Mn1.5O4 正極材料的結構與性能 3.2.2 LiNi0.5Mn1.5O4 正極材料的失效機製 3.2.3 LiNi0.5Mn1.5O4 正極材料的合成 3.2.4 LiNi0.5Mn1.5O4 正極材料的形貌控製 3.2.5 LiNi0.5Mn1.5O4 正極材料的摻雜 3.2.6 LiNi0.5Mn1.5O4 正極材料的表面包覆 參考文獻 第4 章 磷酸鹽正極材料 4.1 磷酸亞鐵鋰 4.1.1 LiFePO4 的晶體結構 4.1.2 LiFePO4 的充放電機理

4.1.3 LiFePO4 的合成方法 4.1.4 LiFePO4 的摻雜改性 4.2 磷酸錳鋰 4.2.1 LiMnPO4 的結構特性 4.2.2 LiMnPO4 的改性研究 4.3 LiCoPO4 和LiNiPO4 正極材料 4.3.1 LiCoPO4 的結構 4.3.2 LiCoPO4 的製備方法 4.3.3 LiCoPO4 的摻雜改性 4.3.4 LiNiPO4 正極材料 4.4 Li3V2(PO4) 3 正極材料 4.4.1 Li3V2(PO4) 3 的結構特點 4.4.2 Li3V2(PO4) 3 的製備方法 4.4.3 Li3V2(PO4) 3 的摻雜改性 4.4.4 不同形貌

的Li3V2(PO4) 3 4.5 焦磷酸鹽正極材料 4.6 氟磷酸鹽正極材料 參考文獻 第5 章 矽酸鹽正極材料 5.1 矽酸鐵鋰 5.1.1 矽酸鐵鋰的結構 5.1.2 矽酸鐵鋰的合成 5.1.3 矽酸鐵鋰的改性 5.2 矽酸錳鋰 5.2.1 矽酸錳鋰的結構 5.2.2 奈米矽酸錳鋰材料的碳包覆 5.2.3 矽酸錳鋰材料的摻雜 5.3 矽酸鈷鋰 參考文獻 第6 章 LiFeSO4F 正極材料 6.1 LiFeSO4F 的結構 6.2 LiFeSO4F 的合成方法 6.2.1 離子熱法 6.2.2 固相法 6.2.3 聚合物介質法 6.2.4 微波溶劑熱法 6.3 LiFeSO4F 的摻

雜改性 6.3.1 LiFeSO4F 的金屬摻雜 6.3.2 LiFeSO4F 的包覆改性 參考文獻 第7 章 碳基、矽基、錫基材料 7.1 碳基材料 7.1.1 石墨 7.1.2 非石墨類 7.1.3 碳奈米材料 7.1.4 石墨烯材料 7.2 矽基材料 7.2.1 矽負極材料的儲鋰機理 7.2.2 矽負極材料奈米化 7.2.3 矽-碳複合材料 7.2.4 其他矽基複合材料 7.3 錫基材料 7.3.1 錫基材料的奈米化 7.3.2 錫-碳複合材料 參考文獻 第8 章 Li4Ti5O12 負極材料 8.1 Li4Ti5O12 的結構及其穩定性 8.1.1 Li4Ti5O12 的結構 8.

1.2 Li4Ti5O12 的穩定性 8.2 Li4Ti5O12 的電化學性能 8.3 Li4Ti5O12 的合成 8.3.1 Li4Ti5O12 的合成方法 8.3.2 Li4Ti5O12 的奈米化及表面形貌控製 8.4 Li4Ti5O12 的摻雜 8.5 Li4Ti5O12 材料的表面改性 8.5.1 Li4Ti5O12 複合材料 8.5.2 Li4Ti5O12 的表面改性 8.6 Li4Ti5O12 材料的氣脹 8.6.1 Li4Ti5O12 材料的產氣機理 8.6.2 抑製Li4Ti5O12 材料氣脹的方法 參考文獻 第9 章 鈦基負極材料 9.1 Li-Ti-O 化合物 9.1.1

LiTi2O4 9.1.2 Li2Ti3O7 9.1.3 Li2Ti6O13 9.2 MLi2Ti6O14(M= 2Na, Sr, Ba) 9.2.1 MLi2Ti6O14(M= 2Na, Sr, Ba) 的結構 9.2.2 MLi2Ti6O14(M= 2Na, Sr, Ba) 的合成方法 9.2.3 MLi2Ti6O14(M= 2Na, Sr, Ba) 的摻雜改性 9.2.4 MLi2Ti6O14(M= 2Na, Sr, Ba) 的包覆改性 9.3 Li2MTi3O8(M= Zn, Cu, Mn) 9.3.1 Li2MTi3O8 9.3.2 Li2MTi3O8 9.3.3 Li2MTi3O

8 9.4 Li-Cr-Ti-O 9.4.1 LiCrTiO4 9.4.2 Li5Cr7Ti6O25 9.5 TiO2 負極材料 參考文獻 第10 章 其他新型負極材料 10.1 過渡金屬氧化物負極材料 10.1.1 四氧化三鈷 10.1.2 氧化鎳 10.1.3 二氧化錳 10.1.4 雙金屬氧化物 10.2 鈮基負極材料 10.2.1 鈮基氧化物負極材料 10.2.2 鈦鈮氧化物(Ti-Nb-O) 10.2.3 其他鈮基氧化物 10.3 磷化物和氮化物負極材料 10.4 硫化物負極材料 10.5 硝酸鹽負極材料 參考文獻 第11 章 鋰離子電池材料的理論設計及其電化學性能的預測 11.

1 鋰離子電池材料的熱力學穩定性 11.1.1 電池材料相對於元素相的熱力學穩定性 11.1.2 電池材料相對於氧化物的熱力學穩定性 11.2 電極材料的力學穩定性及失穩機製 11.2.1 LixMPO4(M= Fe、Mn; x = 0、1) 材料的力學性質 11.2.2 LixMPO4(M= Fe、Mn;x = 0、1) 材料的電子結構及力學失穩機製 11.3 Li2-xMO3 電極材料的晶格釋氧問題及其氧化還原機理 11.3.1 Li2-xMO3 電極材料的晶格釋氧問題 11.3.2 Li2-xMO3 電極材料的氧化還原機理 11.4 鋰離子電池材料的電化學性能的理論預測 11.4.1 電

極材料的理論電壓及儲鋰機製 11.4.2 電極材料的表面形貌的預測及表面效應 11.4.3 鋰離子擴散動力學及倍率性能 參考文獻   序   鋰離子電池因其具有比能量大、自放電小、重量輕和環境友善等優點而成為行動式電子產品的理想電源,也是電動汽車和混合電動汽車的首選電源。因此,鋰離子電池及其相關材料已成為世界各國科研人員的研究熱門議題之一。鋰離子電池主要由正極材料、負極材料、電解液和電池隔膜四部分組成,其性能主要取决於所用電池内部材料的結構和性能。正極材料是鋰離子電池的核心,也是區别多種鋰離子電池的依據,占電池成本的40%以上;負極材料相對來説市場較為成熟,成本所占比例在10%左右。正

極材料由於其價格偏高、比容量偏低而成為制約鋰離子電池被大規模推廣應用的瓶頸。雖然鋰離子電池的保護電路已經比較成熟,但對於電池而言,要真正保證安全,電極材料的選擇十分關鍵。一般來説,和負極材料相比,正極材料的能量密度和功率密度低,並且也是引發動力鋰離子電池安全隱患的主要原因。   目前市場中消費類產業化鋰離子電池產品的負極材料均採用石墨類碳基材料。但是碳基負極材料由於嵌鋰電位接近金屬鋰,在電池使用過程中,隨着不斷的充放電,鋰離子易在碳負極上發生沉積,並生成針狀鋰枝晶,進而刺破隔膜導致電池内部短路而造成安全事故或存在潜在危險。因此,正、負極材料的選擇和質量直接决定鋰離子電池的性能、價格及其安全性

。廉價、高性能的電極材料的研究一直是鋰離子電池行業發展的重點。   為了推動鋰離子電池行業的發展,幫助大專院校、企業院所的研發,我們編著了《鋰離子電池電極材料》一書。全書包括11 章,主要介紹了鋰離子電池各類正極材料和負極材料的製備方法、結構、電化學性能的調控以及第一性原理計算在鋰離子電池電極材料中的應用。編著者已有十多年從事電化學與化學電源的教學、科研的豐富經驗,有鋰離子電池電極材料的結構設計和性能調控及生產第一線的大量實踐經歷,根據自身的體會以及參考了大量國内外相關文獻,進行了本書的編寫。第1~5、7~10 章由伊廷鋒編寫,第6、11 章由謝穎、伊廷鋒編寫。全書由伊廷鋒定稿。對給予本書啓

示和參考的文獻作者予以致謝。並特别感謝舒杰副教授為本書提供了大量數據和圖片。   鋰離子電池電極材料的涉及面廣,又正處於蓬勃發展之中,編著者水平有限,難免掛一漏萬,不妥之處敬請專家和讀者來信來函批評指正。

具離子摻雜尖晶石鋰鎳錳氧於鋰離子電池正極材料之研究

為了解決氧離子o2-的問題,作者施昶鵬 這樣論述:

在此研究中成功以噴霧乾燥法製備出具有尖晶石相鋰鎳錳氧(LiNi0.5Mn1.5O4)正極材料,在此材料中存在有序相P4332空間群與無序相Fd3m的兩個空間群。藉由鍛燒溫度可以調整不同空間群的比例來觀察材料的物理及電化學性質。而鍛燒溫度為900℃擁有最好的電化學性質。由於LNMO材料存在電容保持率不好、速率能力和高溫下的電性特性不佳等問題,透過陽離子的摻雜改善這些問題。利用XRD, SEM, PSA, XPS, RAMAN進行結構、表面形貌的分析,再以CV、EIS、充放電測試進行電化學性能的分析。經過釩離子的摻雜(LiNi0.5Mn1.5-xVxO4)在高速率下能夠擁有高電容值以及維持較高的

電容保持率。LiNi0.5Mn1.49V0.01O4在1.0充放電100圈後擁有111.9 mAh g-1的電容值,同時也有97.8%的放電電容保持率。 另外,為了更進一步改善LNMO金屬離子溶出及在高溫下循環壽命不佳的缺點,藉由氟離子F-取代氧離子O2-以減少Mn4+與Ni4+的生成,而提升LNMO的電化學表現。LiNi0.5Mn1.5O3.8F0.2具有良好的庫侖效率為88.8%,放電容量為109.8 mAh g-1,在高溫下以0.2C充放電50次後,容量保持率為95.0%。同時氟的摻雜也可以增加充放電的速率能力。LiNi0.5Mn1.5O3.9F0.1在2.0C速率下進行200次循環後

可保持110.6 mAh g-1的高放電容量。