Gibbs free energy ta的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列問答集和資訊懶人包

Gibbs free energy ta的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦Chen, Long-Qing寫的 Thermodynamic Equilibrium and Stability of Materials 和(瑞典)希勒特的 相平衡、相圖和相變:其熱力學基礎(第2版)都 可以從中找到所需的評價。

這兩本書分別來自 和北京大學所出版 。

中原大學 化學系 陳欣聰所指導 陳少定的 理論計算探討NO3-/N2轉換成NH3在單原子和雙原子催化劑上的電化學還原反應 (2021),提出Gibbs free energy ta關鍵因素是什麼,來自於DFT 理論計算。

而第二篇論文國立中正大學 物理系研究所 林財鈺所指導 盧漢的 鐵磁性物質的磁滯模型研究 (2021),提出因為有 磁滯現象、易辛模型、均場近似法、自由能、數值模擬的重點而找出了 Gibbs free energy ta的解答。

接下來讓我們看這些論文和書籍都說些什麼吧:

除了Gibbs free energy ta,大家也想知道這些:

Thermodynamic Equilibrium and Stability of Materials

為了解決Gibbs free energy ta的問題,作者Chen, Long-Qing 這樣論述:

This is a textbook on thermodynamics of materials for junior/senior undergraduate students and first-year graduate students as well as a reference book for researchers who would like to refresh their understanding of thermodynamics.The textbook employs a plain language to explain the thermodynamic c

oncepts and quantities. It embraces the mathematical beauty and rigor of Gibbs thermodynamics through the fundamental equation of thermodynamics from which all thermodynamic properties of a material can be derived. However, a reader with basic first-year undergraduate calculus skills will be able to

get through the book without difficulty. One unique feature of this textbook is the descriptions of the step-by-step procedures for computing all the thermodynamic properties from the fundamental equation of thermodynamics and all the thermodynamic energies from a set of common, experimentally meas

urable thermodynamic properties, supplemented with ample numerical examples.Another unique feature of this textbook is its emphasis on the concept of chemical potential and its applications to phase equilibria in single component systems and binary solutions, chemical reaction equilibria, and lattic

e and electronic defects in crystals. The concept of chemical potential is introduced at the very beginning of the book together with temperature and pressure. It avoids or minimizes the use of terms such as molar Gibbs free energy, partial molar Gibbs free energy, or Gibbs potential because molar G

ibbs free energy or partial molar Gibbs free energy is precisely the chemical potential of a material or a component. It is the chemical potential that determines the stability of chemical species, compounds, and phases and their tendency to chemically react to form new species, transform to new phy

sical state, and migrate from one spatial location to another. Therefore, it is the chemical potential differences or gradients that drive essentially all materials processes of interest. A reader after finishing reading the book is expected to not only achieve a high-level fundamental understanding

of thermodynamics but also acquire the analytical skills of applying thermodynamics to determining materials equilibrium and driving forces for materials processes. Long-Qing Chen received B.S., M.S. and Ph.D. degrees, all in materials science and engineering, from Zhejiang University, Stony Broo

k University, and the Massachusetts Institute of Technology, respectively. He has been teaching thermodynamics of materials and kinetics of materials at Penn State since 1992 and is currently the Donald W. Hamer Professor of Materials Science and Engineering, Professor of Engineering Science and Mec

hanics, and Professor of Mathematics. He has published over 600 papers in the area of thermodynamics, kinetics, and computational modeling of materials processes and microstructure evolution in structural alloys, functional ceramics, energy materials, and polymer-based composites. Prof. Chen is the

Editor-in-Chief for npj Computational Materials published by Springer Nature. He is a fellow of several major professional materials societies including Materials Research Society (MRS), The Metals, Minerals and Materials (TMS) Society, the American Ceramic Society (ACerS), and American Society for

Metals (ASM) International as well as a fellow of the American Physical Society (APS) and of American Association for the Advancement of Science (AAAS). He has received many awards for his research including the 2014 MRS Materials Theory Award, the Humboldt Prize, and a Guggenheim Fellowship.

理論計算探討NO3-/N2轉換成NH3在單原子和雙原子催化劑上的電化學還原反應

為了解決Gibbs free energy ta的問題,作者陳少定 這樣論述:

(1) 調節錨定在噻吩連接卟啉上的單原子催化劑的配位環境以實現高效的氮還原反應:溫和條件下的電化學氮還原反應 (NRR) 可以替代正在進行的高能耗制氮工業和溫室氣體排放。通過調整其配位環境來調整單原子催化劑(SACs)的電子結構最近已成為進一步提高其電催化活性的一種相當有前途的策略。在此,我們設計了由噻吩連接的卟啉(TM-N4/TP 和 TM-N4-xBx/TP,其中 TM = Sc 到 Au,Tc、Cd 和 Hg 以外)的新型 SAC作為NRR 的催化劑,並使用密度泛函理論計算。在這些催化劑中,TM-N4/TP(TM = Ti、Nb、Mo、Ta、W 和 Re)和具有水雙層的 TM-N4/T

P(TM = Nb、Mo、W 和 Re)表現出優異的活性(低極限電位),但選擇性低。令人鼓舞的是,我們發現 Mo-N3B/TP、Mo-N2B2/TP、W-N3B/TP、W-N2B2/TP、Re-N3B/TP 和 Re-N2B2/TP 是最有前景的 NRR 催化劑,因為它們表現出穩定性、優異的活性和高選擇性,具有低極限電位 (-0.33 ~ -0.90) 和高法拉第效率 (> 99.80 %)。此外,多層級描述符提供了對 NRR 活動起源的深入了解,並能夠在眾多候選中進行快速預篩選。這項工作為在一般環境下設計更有效的 NRR 催化劑並開闢了新視角。(2) 錨定在石墨氮化碳中的單原子催化劑對硝酸鹽

電化學還原製氨的催化活性機制探討:將硝酸鹽水污染物電化學還原為有價值的氨,低溫制氨取代了Haber-Bosch提供了一條環保且高效的途徑。然而,由於缺乏對高度複雜的硝酸鹽還原和 NH3 選擇性的機制,尋找用於實現硝酸鹽轉化為氨的穩定催化劑仍然是一項挑戰。在此,我們系統地使用第一原理計算研究了負載在石墨氮化碳 (TM/g-C3N4) 上的單原子催化劑對硝酸鹽還原反應 (NO3RR) 的電催化活性和 NH3 選擇性。我們的研究結果表明,Ti/g-C3N4、V/g-C3N4 和 Nb/g-C3N4 是最有前途的 NO3RR 催化劑,因為它們具有穩定性、優異的活性、高選擇性(法拉第效率約為 100%)

和低極限電位(Ti/g-C3N4、V/g-C3N4 和 Nb/g-C3N4 分別為 -0.42、-0.25 和 -0.40 V)。此外,在副產物 NO2、NO 和 N2O 的形成過程中發現了相當大的能障,驗證了它們的高選擇性。硝酸鹽到氨的轉化比在 TM/g-C3N4 上的析氫反應更具競爭力,因為它具有較低的極限電位。這項工作揭示了單原子催化劑中 NO3RR 反應途徑的結構依賴性,並在一般環境下設計更高效的 NO3RR 催化劑開闢了新途徑。(3)電催化雙原子催化劑的硝酸鹽還原活性機制探討:電化學硝酸鹽還原反應 (NO3RR) 有望替代傳統的 Haber-Bosch 用於氮污染管理和低溫氨生產。然

而,它依賴具有可控反應途徑和產物選擇性的電催化劑。在此,我們使用第一原理計算設計了負載在 N 摻雜石墨烯 (TM2/N6-G) 上的新型同核雙原子催化劑 (DAC) 作為潛在的 NO3RR 催化劑。結果表明,Cr2/N6-G、Mn2/N6-G 和 Cu2/N6-G 是最有前途的 NO3RR 催化劑,因為它們表現出穩定性、優異的活性、高選擇性(法拉第效率 > 61.28 %)和低極限電位(Cr2/N6-G、Mn2/N6-G 和 Cu2/N6-G 分別為 -0.46、-0.45 和 -0.36 V)。此外,多層級描述符和火山圖提供了對 NO3RR 活動起源的深入了解,並能夠在眾多候選中進行快速預篩

選。此外,在副產物 NO2、NO 和 N2O 的形成中發現了相當大的能障,驗證了它們的高選擇性。在具有低極限電位的 Cr2/N6-G、Mn2/N6-G 和 Cu2/N6-G 上,硝酸鹽向氨的轉化比析氫反應更具競爭力。本研究為合理設計高活性、選擇性和耐用的 NO3RR 電催化劑提供了新的方向。

相平衡、相圖和相變:其熱力學基礎(第2版)

A PHP Error was encountered

Severity: Warning

Message: file_put_contents(/var/www/html/prints/public/images/books_new/CN1/116/62/CN11162340.jpg): failed to open stream: No such file or directory

Filename: helpers/global_helper.php

Line Number: 140

Backtrace:

File: /var/www/html/prints/application/helpers/global_helper.php
Line: 140
Function: file_put_contents

File: /var/www/html/prints/application/views/article_v2.php
Line: 248
Function: coverWebp_online

File: /var/www/html/prints/application/controllers/Pages.php
Line: 662
Function: view

File: /var/www/html/prints/public/index.php
Line: 319
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: getimagesize(/var/www/html/prints/public/images/books_new/CN1/116/62/CN11162340.jpg): failed to open stream: No such file or directory

Filename: helpers/global_helper.php

Line Number: 62

Backtrace:

File: /var/www/html/prints/application/helpers/global_helper.php
Line: 62
Function: getimagesize

File: /var/www/html/prints/application/helpers/global_helper.php
Line: 142
Function: coverWebp

File: /var/www/html/prints/application/views/article_v2.php
Line: 248
Function: coverWebp_online

File: /var/www/html/prints/application/controllers/Pages.php
Line: 662
Function: view

File: /var/www/html/prints/public/index.php
Line: 319
Function: require_once

A PHP Error was encountered

Severity: Notice

Message: Trying to access array offset on value of type bool

Filename: helpers/global_helper.php

Line Number: 64

Backtrace:

File: /var/www/html/prints/application/helpers/global_helper.php
Line: 64
Function: _error_handler

File: /var/www/html/prints/application/helpers/global_helper.php
Line: 142
Function: coverWebp

File: /var/www/html/prints/application/views/article_v2.php
Line: 248
Function: coverWebp_online

File: /var/www/html/prints/application/controllers/Pages.php
Line: 662
Function: view

File: /var/www/html/prints/public/index.php
Line: 319
Function: require_once

A PHP Error was encountered

Severity: Notice

Message: Trying to access array offset on value of type bool

Filename: helpers/global_helper.php

Line Number: 66

Backtrace:

File: /var/www/html/prints/application/helpers/global_helper.php
Line: 66
Function: _error_handler

File: /var/www/html/prints/application/helpers/global_helper.php
Line: 142
Function: coverWebp

File: /var/www/html/prints/application/views/article_v2.php
Line: 248
Function: coverWebp_online

File: /var/www/html/prints/application/controllers/Pages.php
Line: 662
Function: view

File: /var/www/html/prints/public/index.php
Line: 319
Function: require_once

A PHP Error was encountered

Severity: Notice

Message: Trying to access array offset on value of type bool

Filename: helpers/global_helper.php

Line Number: 68

Backtrace:

File: /var/www/html/prints/application/helpers/global_helper.php
Line: 68
Function: _error_handler

File: /var/www/html/prints/application/helpers/global_helper.php
Line: 142
Function: coverWebp

File: /var/www/html/prints/application/views/article_v2.php
Line: 248
Function: coverWebp_online

File: /var/www/html/prints/application/controllers/Pages.php
Line: 662
Function: view

File: /var/www/html/prints/public/index.php
Line: 319
Function: require_once

為了解決Gibbs free energy ta的問題,作者(瑞典)希勒特 這樣論述:

主要內容為現代計算機應用觀點下的熱力學基本原理。化學平衡和化學變化的理論基礎也是本書的內容之一,其重點在於相圖的性質。本書從基本原理出發,討論延及多相的系統。第二版新增加的內容包括不可逆熱力學、極值原理和表面、界面熱力學等等。平衡條件的理論刻畫、系統的平衡狀態和達到平衡時的變化都以圖解的形式給出。 Preface to second edition page xiiPreface to first edition xiii1 Basic concepts of thermodynamics 11.1 External state variables 11.2 Interna

l state variables 31.3 The first law of thermodynamics 51.4 Freezing-in conditions 91.5 Reversible and irreversible processes 101.6 Second law of thermodynamics 131.7 Condition of internal equilibrium 171.8 Driving force 191.9 Combined first and second law 211.10 General conditions of equilibrium 23

1.11 Characteristic state functions 241.12 Entropy 262 Manipulation of thermodynamic quantities 302.1 Evaluation of one characteristic state function from another 302.2 Internal variables at equilibrium 312.3 Equations of state 332.4 Experimental conditions 342.5 Notation for partial derivatives 372

.6 Use of various derivatives 382.7 Comparison between CV and CP 402.8 Change of independent variables 412.9 Maxwell relations 433 Systems with variable composition 453.1 Chemical potential 453.2 Molar and integral quantities 463.3 More about characteristic state functions 483.4 Additivity of extens

ive quantities. Free energy and exergy 513.5 Various forms of the combined law 523.6 Calculation of equilibrium 543.7 Evaluation of the driving force 563.8 Driving force for molecular reactions 583.9 Evaluation of integrated driving force as function ofT or P 593.10 Effective driving force 604 Pract

ical handling of multicomponent systems 634.1 Partial quantities 634.2 Relations for partial quantities 654.3 Alternative variables for composition 674.4 The lever rule 704.5 The tie-line rule 714.6 Different sets of components 744.7 Constitution and constituents 754.8 Chemical potentials in a phase

with sublattices 775 Thermodynamics of processes 805.1 Thermodynamic treatment of kinetics ofinternal processes 805.2 Transformation of the set of processes 835.3 Alternative methods of transformation 855.4 Basic thermodynamic considerations for processes 895.5 Homogeneous chemical reactions 925.6

Transport processes in discontinuous systems 955.7 Transport processes in continuous systems 985.8 Substitutional diffusion 1015.9 Onsager』s extremum principle 1046 Stability 1086.1 Introduction 1086.2 Some necessary conditions of stability 1106.3 Sufficient conditions of stability 1136.4 Summary of

stability conditions 1156.5 Limit of stability 1166.6 Limit of stability against fluctuations in composition 1176.7 Chemical capacitance 1206.8 Limit of stability against fluctuations ofinternal variables 1216.9 Le Chatelier』s principle 1237 Applications of molar Gibbs energy diagrams 1267.1 Molar

Gibbs energy diagrams for binary systems 1267.2 Instability of binary solutions 1317.3 Illustration of the Gibbs–Duhem relation 1327.4 Two-phase equilibria in binary systems 1357.5 Allotropic phase boundaries 1377.6 Effect of a pressure difference on a two-phaseequilibrium 1387.7 Driving force for t

he formation of a new phase 1427.8 Partitionless transformation under local equilibrium 1447.9 Activation energy for a fluctuation 1477.10 Ternary systems 1497.11 Solubility product 1518 Phase equilibria and potential phase diagrams 1558.1 Gibbs』 phase rule 1558.2 Fundamental property diagram 1578.3

Topology of potential phase diagrams 1628.4 Potential phase diagrams in binary and multinary systems 1668.5 Sections of potential phase diagrams 1688.6 Binary systems 1708.7 Ternary systems 1738.8 Direction of phase fields in potential phase diagrams 1778.9 Extremum in temperature and pressure 1819

Molar phase diagrams 1859.1 Molar axes 1859.2 Sets of conjugate pairs containing molar variables 1899.3 Phase boundaries 1939.4 Sections of molar phase diagrams 1959.5 Schreinemakers』 rule 1979.6 Topology of sectioned molar diagrams 20110 Projected and mixed phase diagrams 20510.1 Schreinemakers』 p

rojection of potential phase diagrams 20510.2 The phase field rule and projected diagrams 20810.3 Relation between molar diagrams and Schreinemakers』projected diagrams 21210.4 Coincidence of projected surfaces 21510.5 Projection of higher-order invariant equilibria 21710.6 The phase field rule and m

ixed diagrams 22010.7 Selection of axes in mixed diagrams 22310.8 Konovalov』s rule 22610.9 General rule for singular equilibria 22911 Direction of phase boundaries 23311.1 Use of distribution coefficient 23311.2 Calculation of allotropic phase boundaries 23511.3 Variation of a chemical potential in

a two-phase field 23811.4 Direction of phase boundaries 24011.5 Congruent melting points 24411.6 Vertical phase boundaries 24811.7 Slope of phase boundaries in isothermal sections 24911.8 The effect of a pressure difference between two phases 25112 Sharp and gradual phase transformations 25312.1 Exp

erimental conditions 25312.2 Characterization of phase transformations 25512.3 Microstructural character 25912.4 Phase transformations in alloys 26112.5 Classification of sharp phase transformations 26212.6 Applications of Schreinemakers』 projection 26612.7 Scheil』s reaction diagram 27012.8 Gradual

phase transformations at fixed composition 27212.9 Phase transformations controlled by a chemical potential 27513 Transformations in closed systems 27913.1 The phase field rule at constant composition 27913.2 Reaction coefficients in sharp transformationsfor p = c + 1 28013.3 Graphical evaluation of

reaction coefficients 28313.4 Reaction coefficients in gradual transformationsfor p = c 28513.5 Driving force for sharp phase transformations 28713.6 Driving force under constant chemical potential 29113.7 Reaction coefficients at constant chemical potential 29413.8 Compositional degeneracies for p

= c 29513.9 Effect of two compositional degeneracies for p = c . 1 29914 Partitionless transformations 30214.1 Deviation from local equilibrium 30214.2 Adiabatic phase transformation 30314.3 Quasi-adiabatic phase transformation 30514.4 Partitionless transformations in binary system 30814.5 Partial

chemical equilibrium 31114.6 Transformations in steel under quasi-paraequilibrium 31514.7 Transformations in steel under partitioning of alloying elements 31915 Limit of stability and critical phenomena 32215.1 Transformations and transitions 32215.2 Order–disorder transitions 32515.3 Miscibility ga

ps 33015.4 Spinodal decomposition 33415.5 Tri-critical points 33816 Interfaces 34416.1 Surface energy and surface stress 34416.2 Phase equilibrium at curved interfaces 34516.3 Phase equilibrium at fluid/fluid interfaces 34616.4 Size stability for spherical inclusions 35016.5 Nucleation 35116.6 Phase

equilibrium at crystal/fluid interface 35316.7 Equilibrium at curved interfaces with regard to composition 35616.8 Equilibrium for crystalline inclusions with regard to composition 35916.9 Surface segregation 36116.10 Coherency within a phase 36316.11 Coherency between two phases 36616.12 Solute dr

ag 37117 Kinetics of transport processes 37717.1 Thermal activation 37717.2 Diffusion coefficients 38117.3 Stationary states for transport processes 38417.4 Local volume change 38817.5 Composition of material crossing an interface 39017.6 Mechanisms of interface migration 39117.7 Balance of forces a

nd dissipation 39618 Methods of modelling 40018.1 General principles 40018.2 Choice of characteristic state function 40118.3 Reference states 40218.4 Representation of Gibbs energy of formation 40518.5 Use of power series in T 40718.6 Representation of pressure dependence 40818.7 Application of phys

ical models 41018.8 Ideal gas 41118.9 Real gases 41218.10 Mixtures of gas species 41518.11 Black-body radiation 41718.12 Electron gas 41819 Modelling of disorder 42019.1 Introduction 42019.2 Thermal vacancies in a crystal 42019.3 Topological disorder 42319.4 Heat capacity due to thermal vibrations 4

2519.5 Magnetic contribution to thermodynamic properties 42919.6 A simple physical model for the magnetic contribution 43119.7 Random mixture of atoms 43419.8 Restricted random mixture 43619.9 Crystals with stoichiometric vacancies 43719.10 Interstitial solutions 43920 Mathematical modelling of solu

tion phases 44120.1 Ideal solution 44120.2 Mixing quantities 44320.3 Excess quantities 44420.4 Empirical approach to substitutional solutions 44520.5 Real solutions 44820.6 Applications of the Gibbs–Duhem relation 45220.7 Dilute solution approximations 45420.8 Predictions for solutions in higher-ord

er systems 45620.9 Numerical methods of predictions for higher-order systems 45821 Solution phases with sublattices 46021.1 Sublattice solution phases 46021.2 Interstitial solutions 46221.3 Reciprocal solution phases 46421.4 Combination of interstitial and substitutional solution 46821.5 Phases with

variable order 46921.6 Ionic solid solutions 47222 Physical solution models 47622.1 Concept of nearest-neighbour bond energies 47622.2 Random mixing model for a substitutional solution 47822.3 Deviation from random distribution 47922.4 Short-range order 48222.5 Long-range order 48422.6 Long- and sh

ort-range order 48622.7 The compound energy formalism with short-range order 48822.8 Interstitial ordering 49022.9 Composition dependence of physical effects 493References 496Index 499

鐵磁性物質的磁滯模型研究

為了解決Gibbs free energy ta的問題,作者盧漢 這樣論述:

本文著重於探討鐵磁性和反鐵磁性物質的磁滯現象。在巨觀的角度下,我們從Stoner-Wohlfarth模型研究磁滯現象的統計和動力學表現,並介紹該模型是如何運作的。在微觀角度下,我們以Ising模型及Glauber動力學為基礎,利用蒙地卡羅方法及解析平均場近似法建構數值模型來進行研究。研究中也對雙層Ising模型的自由能進行了計算。我們希望研究成果對磁滯領域的研究有所幫助。